scholarly journals The role of microorganisms and plants at different stages of ecosystem development for soil formation

2013 ◽  
Vol 10 (2) ◽  
pp. 1867-1898 ◽  
Author(s):  
S. Schulz ◽  
R. Brankatschk ◽  
A. Dümig ◽  
I. Kögel-Knabner ◽  
M. Schloter ◽  
...  

Abstract. Soil formation is the result of a complex network of biological as well as chemical and physical processes. Mainly the role of soil microbes is of high interest in this respect, as they are responsible for most transformations and drive the development of stable and labile carbon and nutrient pools in soil, which facilitate the basis for the subsequent establishment of plant communities. Glacier forefields, which provide a chronosequence of soils of different age due to the continuous retreat of the ice layer as a consequence of the increasing annual temperature since the last centuries, are a nice play ground to study the interaction of bacteria, fungi and archaea with their abiotic environment at different stages of soil formation. In this review we give insights into the role of microbes for soil development on the basis of investigations which have been performed at the Damma glacier in Switzerland in the frame of two international network projects Big Link (http://www.cces.ethz.ch/projects/clench/BigLink/) and DFG SFB/TRR 38 (http://www.tu-cottbus.de/ecosystem/). The review focusses on the microbiology of three major steps of soil formation including weathering of the parental material, the development of basic nutrient cycles, the formation of soil crusts and biofilms as initial microbial network structures and the occurrence of plants respectively the setup of plant communities.

2013 ◽  
Vol 10 (6) ◽  
pp. 3983-3996 ◽  
Author(s):  
S. Schulz ◽  
R. Brankatschk ◽  
A. Dümig ◽  
I. Kögel-Knabner ◽  
M. Schloter ◽  
...  

Abstract. Soil formation is the result of a complex network of biological as well as chemical and physical processes. The role of soil microbes is of high interest, since they are responsible for most biological transformations and drive the development of stable and labile pools of carbon (C), nitrogen (N) and other nutrients, which facilitate the subsequent establishment of plant communities. Forefields of receding glaciers provide unique chronosequences of different soil development stages and are ideal ecosystems to study the interaction of bacteria, fungi and archaea with their abiotic environment. In this review we give insights into the role of microbes for soil development. The results presented are based on studies performed within the Collaborative Research Program DFG SFB/TRR 38 (http://www.tu-cottbus.de/ecosystem ) and are supplemented by data from other studies. The review focusses on the microbiology of major steps of soil formation. Special attention is given to the development of nutrient cycles on the formation of biological soil crusts (BSCs) and on the establishment of plant–microbe interactions.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1711
Author(s):  
Mirza Hasanuzzaman ◽  
M. H. M. Borhannuddin Bhuyan ◽  
Ali Raza ◽  
Barbara Hawrylak-Nowak ◽  
Renata Matraszek-Gawron ◽  
...  

Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.


2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2036
Author(s):  
Luigi Marongiu ◽  
Markus Burkard ◽  
Sascha Venturelli ◽  
Heike Allgayer

Natural compounds such as essential oils and tea have been used successfully in naturopathy and folk medicine for hundreds of years. Current research is unveiling the molecular role of their antibacterial, anti-inflammatory, and anticancer properties. Nevertheless, the effect of these compounds on bacteriophages is still poorly understood. The application of bacteriophages against bacteria has gained a particular interest in recent years due to, e.g., the constant rise of antimicrobial resistance to antibiotics, or an increasing awareness of different types of microbiota and their potential contribution to gastrointestinal diseases, including inflammatory and malignant conditions. Thus, a better knowledge of how dietary products can affect bacteriophages and, in turn, the whole gut microbiome can help maintain healthy homeostasis, reducing the risk of developing diseases such as diverse types of gastroenteritis, inflammatory bowel disease, or even cancer. The present review summarizes the effect of dietary compounds on the physiology of bacteriophages. In a majority of works, the substance class of polyphenols showed a particular activity against bacteriophages, and the primary mechanism of action involved structural damage of the capsid, inhibiting bacteriophage activity and infectivity. Some further dietary compounds such as caffeine, salt or oregano have been shown to induce or suppress prophages, whereas others, such as the natural sweeter stevia, promoted species-specific phage responses. A better understanding of how dietary compounds could selectively, and specifically, modulate the activity of individual phages opens the possibility to reorganize the microbial network as an additional strategy to support in the combat, or in prevention, of gastrointestinal diseases, including inflammation and cancer.


2021 ◽  
Vol 13 (12) ◽  
pp. 6673
Author(s):  
Lidia Luty ◽  
Kamila Musiał ◽  
Monika Zioło

The functioning of various agroecosystems is nowadays shaped by different farming systems, which may impair their functions, as well as being beneficial to them. The benefits include ecosystem services, defined as economic and noneconomic values gained by humans from ecosystems, through supporting soil formation and nutrient circulation, and the impact of agriculture on climate and biodiversity. Their mutual flow and various disturbances depend on the agroecosystem’s management method, which is associated with the type of management of agricultural land (AL) in individual farms. This paper raises a problem of transformation in the structure of three main farming systems in Poland, in 2004–2018, in relation to the implementation of 16 selected ecosystem services and their scale. Special attention was given to organic farming, as the most environmentally friendly and sustainable. The analysis demonstrates the increase in ALs in that type of production during the analyzed period of time. Disparities of transformation associated with the type of agricultural system were noticeable at the regional level, which were presented in 16 Polish voivodeships. The results of the analysis confirm that the organic system, which is an important carrier of various ecosystem services, gained a stable position. Moreover, areas with integrated farming still do not exceed 0.5% of total agricultural lands in such voivodeships. The analysis of factors influencing the deterioration or disappearance of selected environmental services characterizing agricultural systems indicates the need to depart from an intensive conventional management system.


2019 ◽  
Vol 32 (14) ◽  
pp. 4215-4234 ◽  
Author(s):  
Qin Su ◽  
Buwen Dong

Abstract Observational analysis indicates significant decadal changes in daytime, nighttime, and compound (both daytime and nighttime) heat waves (HWs) over China across the mid-1990s, featuring a rapid increase in frequency, intensity, and spatial extent. The variations of these observed decadal changes are assessed by the comparison between the present day (PD) of 1994–2011 and the early period (EP) of 1964–81. The compound HWs change most remarkably in all three aspects, with frequency averaged over China in the PD tripling that in the EP and intensity and spatial extent nearly doubling. The daytime and nighttime HWs also change significantly in all three aspects. A set of numerical experiments is used to investigate the drivers and physical processes responsible for the decadal changes of the HWs. Results indicate the predominant role of the anthropogenic forcing, including changes in greenhouse gas (GHG) concentrations and anthropogenic aerosol (AA) emissions in the HW decadal changes. The GHG changes have dominant impacts on the three types of HWs, while the AA changes make significant influences on daytime HWs. The GHG changes increase the frequency, intensity, and spatial extent of the three types of HWs over China both directly via the strengthened greenhouse effect and indirectly via land–atmosphere and circulation feedbacks in which GHG-change-induced warming in sea surface temperature plays an important role. The AA changes decrease the frequency and intensity of daytime HWs over Southeastern China through mainly aerosol–radiation interaction, but increase the frequency and intensity of daytime HWs over Northeastern China through AA-change-induced surface–atmosphere feedbacks and dynamical changes related to weakened East Asian summer monsoon.


2013 ◽  
Vol 26 (21) ◽  
pp. 8513-8528 ◽  
Author(s):  
Megan S. Mallard ◽  
Gary M. Lackmann ◽  
Anantha Aiyyer

Abstract A method of downscaling that isolates the effect of temperature and moisture changes on tropical cyclone (TC) activity was presented in Part I of this study. By applying thermodynamic modifications to analyzed initial and boundary conditions from past TC seasons, initial disturbances and the strength of synoptic-scale vertical wind shear are preserved in future simulations. This experimental design allows comparison of TC genesis events in the same synoptic setting, but in current and future thermodynamic environments. Simulations of both an active (September 2005) and inactive (September 2009) portion of past hurricane seasons are presented. An ensemble of high-resolution simulations projects reductions in ensemble-average TC counts between 18% and 24%, consistent with previous studies. Robust decreases in TC and hurricane counts are simulated with 18- and 6-km grid lengths, for both active and inactive periods. Physical processes responsible for reduced activity are examined through comparison of monthly and spatially averaged genesis-relevant parameters, as well as case studies of development of corresponding initial disturbances in current and future thermodynamic conditions. These case studies show that reductions in TC counts are due to the presence of incipient disturbances in marginal moisture environments, where increases in the moist entropy saturation deficits in future conditions preclude genesis for some disturbances. Increased convective inhibition and reduced vertical velocity are also found in the future environment. It is concluded that a robust decrease in TC frequency can result from thermodynamic changes alone, without modification of vertical wind shear or the number of incipient disturbances.


2004 ◽  
Vol 104 (2) ◽  
pp. 27-34 ◽  
Author(s):  
Theodore W. Awadzi ◽  
M. A. Cobblah ◽  
Henrik Breuning-Madsen

Sign in / Sign up

Export Citation Format

Share Document