scholarly journals Ocean acidification state in western Antarctic surface waters: controls and interannual variability

2014 ◽  
Vol 11 (1) ◽  
pp. 57-73 ◽  
Author(s):  
M. Mattsdotter Björk ◽  
A. Fransson ◽  
A. Torstensson ◽  
M. Chierici

Abstract. During four austral summers (December to January) from 2006 to 2010, we investigated the surface-water carbonate system and its controls in the western Antarctic Ocean. Measurements of total alkalinity (AT), pH and total inorganic carbon (CT) were investigated in combination with high-frequency measurements on sea-surface temperature (SST), salinity and Chl a. In all parameters we found large interannual variability due to differences in sea-ice concentration, physical processes and primary production. The main result from our observations suggests that primary production was the major control on the calcium carbonate saturation state (Ω) in austral summer for all years. This was mainly reflected in the covariance of pH and Chl a. In the sea-ice-covered parts of the study area, pH and Ω were generally low, coinciding with low Chl a concentrations. The lowest pH in situ and lowest aragonite saturation (ΩAr ~ 1.0) were observed in December 2007 in the coastal Amundsen and Ross seas near marine outflowing glaciers. These low Ω and high pH values were likely influenced by freshwater dilution. Comparing 2007 and 2010, the largest ΩAr difference was found in the eastern Ross Sea, where ΩAr was about 1.2 units lower in 2007 than in 2010. This was mainly explained by differences in Chl a (i.e primary production). In 2010 the surface water along the Ross Sea shelf was the warmest and most saline, indicating upwelling of nutrient and CO2-rich sub-surface water, likely promoting primary production leading to high Ω and pH. Results from multivariate analysis agree with our observations showing that changes in Chl a had the largest influence on the ΩAr variability. The future changes of ΩAr were estimated using reported rates of the oceanic uptake of anthropogenic CO2, combined with our data on total alkalinity, SST and salinity (summer situation). Our study suggests that the Amundsen Sea will become undersaturated with regard to aragonite about 40 yr sooner than predicted by models.

2013 ◽  
Vol 10 (5) ◽  
pp. 7879-7916 ◽  
Author(s):  
M. Mattsdotter Björk ◽  
A. Fransson ◽  
M. Chierici

Abstract. Each December during four years from 2006 to 2010, the surface water carbonate system was measured and investigated in the Amundsen Sea and Ross Sea, western Antarctica as part of the Oden Southern Ocean expeditions (OSO). The I/B Oden started in Punta Arenas in Chile and sailed southwest, passing through different regimes such as, the marginal/seasonal ice zone, fronts, coastal shelves, and polynyas. Discrete surface water was sampled underway for analysis of total alkalinity (AT), total dissolved inorganic carbon (CT) and pH. Two of these parameters were used together with sea-surface temperature (SST), and salinity to obtain a full description of the surface water carbonate system, including pH in situ and calcium carbonate saturation state of aragonite (ΩAr) and calcite (ΩCa). Multivariate analysis was used to investigate interannual variability and the major controls (sea-ice concentration, SST, salinity and chlorophyll a) on the variability in the carbonate system and Ω. This analysis showed that SST and chlorophyll a were the major drivers of the Ω variability in both the Amundsen and Ross seas. In 2007, the sea-ice edge was located further south and the area of the open polynya was relatively small compared to 2010. We found the lowest pH in situ (7.932) and Ω = 1 values in the sea-ice zone and in the coastal Amundsen Sea, nearby marine out flowing glaciers. In 2010, the sea-ice coverage was the largest and the areas of the open polynyas were the largest for the whole period. This year we found the lowest salinity and AT, coinciding with highest chl a. This implies that the highest ΩAr in 2010 was likely an effect of biological CO2 drawdown, which out-competed the dilution of carbonate ion concentration due to large melt water volumes. We predict and discuss future Ω values, using our data and reported rates of oceanic uptake of anthropogenic CO2, suggesting that the Amundsen Sea will become undersaturated with regard to aragonite about 20 yr sooner than predicted by models.


2015 ◽  
Vol 12 (2) ◽  
pp. 1653-1687 ◽  
Author(s):  
A. Weeber ◽  
S. Swart ◽  
P. M. S. Monteiro

Abstract. Increasing anthropogenic CO2 is decreasing surface water aragonite saturation state (ΩA), a growing concern for calcifying Euthecosome pteropods and its wider impact on Antarctic ecosystems. However, our understanding of the seasonal cycle and interannual variability of this vulnerable ecosystem remains limited. This study examines surface water ΩA from four consecutive summers in the Eastern Weddell Gyre (EWG) ice shelf region, and investigates the drivers and the role played by the seasonal cycle in the interannual variability of ΩA. Interannual variability in the seasonal phasing and the rate of summer sea ice thaw was found to be the primary factor explaining interannual variability in surface water ΩA. In "optimal" summers when summer sea ice thaw began in late November/early December (2008/2009 and 2010/2011), the summertime increase in ΩA was found to be 1.02, approximately double that from summers when sea ice thaw was delayed to late December (2009/2010 and 2011/2012). We propose that the two critical climate (physical-biogeochemical) sensitivities for ΩA are the timing and the rate of sea ice thaw, which has a direct impact on the mixed layer and the resulting onset and persistence of phytoplankton blooms. The strength of summertime carbonate saturation depends on seasonal changes of sea ice, stratification and primary production. The sensitivity of surface water biogeochemistry in this region to interannual changes in mixed layer – sea ice processes, suggests that future trends in climate and the seasonal cycle of sea ice, combined with rapidly increasing anthropogenic CO2 will likely be a concern for the Antarctic ice shelf ecosystem within the next few decades. If in the future, primary production is reduced and CO2 increased, our results suggest that in the EWG summertime surface water aragonite undersaturation will emerge by the middle of this century.


2016 ◽  
Vol 29 (24) ◽  
pp. 8931-8948 ◽  
Author(s):  
Ariaan Purich ◽  
Matthew H. England ◽  
Wenju Cai ◽  
Yoshimitsu Chikamoto ◽  
Axel Timmermann ◽  
...  

Abstract A strengthening of the Amundsen Sea low from 1979 to 2013 has been shown to largely explain the observed increase in Antarctic sea ice concentration in the eastern Ross Sea and decrease in the Bellingshausen Sea. Here it is shown that while these changes are not generally seen in freely running coupled climate model simulations, they are reproduced in simulations of two independent coupled climate models: one constrained by observed sea surface temperature anomalies in the tropical Pacific and the other by observed surface wind stress in the tropics. This analysis confirms previous results and strengthens the conclusion that the phase change in the interdecadal Pacific oscillation from positive to negative over 1979–2013 contributed to the observed strengthening of the Amundsen Sea low and the associated pattern of Antarctic sea ice change during this period. New support for this conclusion is provided by simulated trends in spatial patterns of sea ice concentrations that are similar to those observed. These results highlight the importance of accounting for teleconnections from low to high latitudes in both model simulations and observations of Antarctic sea ice variability and change.


2021 ◽  
Author(s):  
Guillaume Liniger ◽  
Sebastien Moreau ◽  
Delphine Lannuzel ◽  
Fernando Paolo ◽  
Peter Strutton

<p>Ice shelves have been melting, thinning and retreating along the coast of West Antarctica for the past four decades, most notably in the Amundsen Sea sector. This area hosts two highly productive coastal polynyas, the Pine Island polynya and the Amundsen Sea polynya, whose opening triggers two of the largest phytoplankton blooms in the Southern Ocean. Previous work in the area suggests that ice shelf melting and thinning increases the iron content of coastal seawater, which could potentially boost ocean primary productivity locally. In this work, we use historical (1992-2017) remote sensing observations of net primary productivity, sea-ice concentration and rate of ice shelves melting to investigate the strength of this connection for these two large polynyas. We used the Abbot, Cosgrove, Pine Island, Thwaites, Dotson and Getz ice shelves for our analyses. Our initial results suggest no significant trends in net primary productivity though time but a large interannual variability for both polynyas. The basal melt rate and ice thinning seem to not be the main drivers of this interannual variability in these polynyas, but sea-ice coverage variability does seem to play a strong role, potentially allowing increased light availability and stratification. Further investigations of circumpolar deep water inputs and climate modes related to ice shelves melting such as El Niño or the southern annular mode are needed to clarify our findings. Our preliminary study points the complexity of ice-ocean systems, where several co-occurring processes influence coastal primary productivity, with consequences for carbon cycling and the climate system.</p>


2021 ◽  
Author(s):  
YoungHyun Koo ◽  
Hongjie Xie ◽  
Stephen F. Ackley ◽  
Alberto M. Mestas-Nuñez ◽  
Grant J. Macdonald ◽  
...  

Abstract. Sentinel-1 C-band synthetic aperture radar (SAR) images can be used to observe the drift of icebergs over the Southern Ocean with around 1–3 days of temporal resolution and 10–40 m of spatial resolution. The Google Earth Engine (GEE) cloud-based platform allows processing of a large quantity of Sentinel-1 images, saving time and computational resources. In this study, we process Sentinel-1 data via GEE to detect and track the drift of iceberg B43 during its lifespan of 3 years (2017–2020) in the Southern Ocean. First, to detect all candidate icebergs in Sentinel-1 images, we employ an object-based image segmentation (simple non-iterative clustering – SNIC) and a traditional backscatter threshold method. Next, we automatically choose and trace the location of the target iceberg by comparing the centroid distance histograms (CDHs) of all detected icebergs in subsequent days with the CDH of the reference target iceberg. Using this approach, we successfully track the iceberg B43 from the Amundsen Sea to the Ross Sea, and examine its changes in area, speed, and direction. Three periods with sudden losses of area (i.e. split-offs) coincide with periods of low sea ice concentration, warm air temperature, and high waves. This implies that these variables may be related to mechanisms causing the split-off of the iceberg. Since the iceberg is generally surrounded by compacted sea ice, its drift correlates in part with sea ice motion and wind velocity. Given that the bulk of the iceberg is under water (~30–60 m freeboard and ~150–400 m thickness), its motion is predominantly driven by the westward-flowing Antarctic Coastal Current (ACoC) which dominates the circulation of the region. Considering the complexity of modeling icebergs, there is a demand for a large iceberg database to better understand the behavior of icebergs and their interactions with surrounding environments. The GEE-based semi-automated iceberg tracking method presented here can be used for this purpose.


2021 ◽  
Vol 15 (10) ◽  
pp. 4727-4744
Author(s):  
YoungHyun Koo ◽  
Hongjie Xie ◽  
Stephen F. Ackley ◽  
Alberto M. Mestas-Nuñez ◽  
Grant J. Macdonald ◽  
...  

Abstract. Sentinel-1 C-band synthetic aperture radar (SAR) images can be used to observe the drift of icebergs over the Southern Ocean with around 1–3 d of temporal resolution and 10–40 m of spatial resolution. The Google Earth Engine (GEE) cloud-based platform allows processing of a large quantity of Sentinel-1 images, saving time and computational resources. In this study, we process Sentinel-1 data via GEE to detect and track the drift of iceberg B43 during its lifespan of 3 years (2017–2020) in the Southern Ocean. First, to detect all candidate icebergs in Sentinel-1 images, we employ an object-based image segmentation (simple non-iterative clustering – SNIC) and a traditional backscatter threshold method. Next, we automatically choose and trace the location of the target iceberg by comparing the centroid distance histograms (CDHs) of all detected icebergs in subsequent days with the CDH of the reference target iceberg. Using this approach, we successfully track iceberg B43 from the Amundsen Sea to the Ross Sea and examine its changes in area, speed, and direction. Three periods with sudden losses of area (i.e., split-offs) coincide with periods of low sea ice concentration, warm air temperature, and high waves. This implies that these variables may be related to mechanisms causing the split-off of the iceberg. Since the iceberg is generally surrounded by compacted sea ice, its drift correlates in part with sea ice motion and wind velocity. Given that the bulk of the iceberg is under water (∼30–60 m freeboard and ∼150–400 m thickness), its motion is predominantly driven by the westward-flowing Antarctic Coastal Current, which dominates the circulation of the region. Considering the complexity of modeling icebergs, there is a demand for a large iceberg database to better understand the behavior of icebergs and their interactions with surrounding environments. The semi-automated iceberg tracking based on the storage capacity and computing power of GEE can be used for this purpose.


2016 ◽  
Vol 28 (5) ◽  
pp. 327-346 ◽  
Author(s):  
Graham Rickard ◽  
Erik Behrens

AbstractAn assessment is made of the ability of the Coupled Model Intercomparison Project 5 (CMIP5) models to represent the seasonal cycles of biogeochemistry of the Ross Sea over the late twentieth century. In particular, sea surface temperature, sea ice concentration, surface chlorophyll a, nitrate, phosphate and silicate, and the depth of the seasonal thermocline (measuring vertical mixing) are examined to quantify the physical-biogeochemical capabilities of each model, and to provide for ‘ranked’ model ensembles. This permits critical assessment of modelled Ross Sea biogeochemical cycling, including less well observed variables such as iron and vertically integrated primary production. The assessment enables determination of model output confidence limits; these confidence limits are used to examine future model scenario projections for consideration of potential ecosystem changes. The future scenarios examined are the representative concentration pathways rcp4.5 and rcp8.5. Our study suggests that by the end of the twenty-first century under rcp4.5 and/or rcp8.5 that there will be average increases in sea surface temperature, surface chlorophyll a, integrated primary production and iron, average decreases in surface nitrate, phosphate and silicate, and relatively large decreases in the depth of the seasonal thermocline and percentage coverage by sea ice in the Ross Sea.


2021 ◽  
pp. 1-21
Author(s):  
Elizabeth M. Jones ◽  
Mario Hoppema ◽  
Karel Bakker ◽  
Hein J.W. de Baar

Abstract The waters along the West Antarctic Peninsula (WAP) have experienced warming and increased freshwater inputs from melting sea ice and glaciers in recent decades. Challenges exist in understanding the consequences of these changes on the inorganic carbon system in this ecologically important and highly productive ecosystem. Distributions of dissolved inorganic carbon (CT), total alkalinity (AT) and nutrients revealed key physical, biological and biogeochemical controls of the calcium carbonate saturation state (Ωaragonite) in different water masses across the WAP shelf during the summer. Biological production in spring and summer dominated changes in surface water Ωaragonite (ΔΩaragonite up to +1.39; ~90%) relative to underlying Winter Water. Sea-ice and glacial meltwater constituted a minor source of AT that increased surface water Ωaragonite (ΔΩaragonite up to +0.07; ~13%). Remineralization of organic matter and an influx of carbon-rich brines led to cross-shelf decreases in Ωaragonite in Winter Water and Circumpolar Deep Water. A strong biological carbon pump over the shelf created Ωaragonite oversaturation in surface waters and suppression of Ωaragonite in subsurface waters. Undersaturation of aragonite occurred at < ~1000 m. Ongoing changes along the WAP will impact the biologically driven and meltwater-driven processes that influence the vulnerability of shelf waters to calcium carbonate undersaturation in the future.


2016 ◽  
Vol 97 (1) ◽  
pp. 111-121 ◽  
Author(s):  
M. N. Raphael ◽  
G. J. Marshall ◽  
J. Turner ◽  
R. L. Fogt ◽  
D. Schneider ◽  
...  

Abstract The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases.


2019 ◽  
Vol 32 (3) ◽  
pp. 665-684 ◽  
Author(s):  
Ryan C. Scott ◽  
Julien P. Nicolas ◽  
David H. Bromwich ◽  
Joel R. Norris ◽  
Dan Lubin

Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.


Sign in / Sign up

Export Citation Format

Share Document