scholarly journals Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil

2016 ◽  
Vol 13 (15) ◽  
pp. 4429-4438 ◽  
Author(s):  
Xian Yang ◽  
Xiulian Chi ◽  
Chengjun Ji ◽  
Hongyan Liu ◽  
Wenhong Ma ◽  
...  

Abstract. Concentrations of leaf nitrogen (N) and phosphorus (P) are two key traits of plants for ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on the stoichiometric patterns of trees and grasses, leaving a significant knowledge gap for shrubs. In this study, we explored the intraspecific and interspecific variations of leaf N and P concentrations in response to the changes in climate, soil property, and evolutionary history. We analysed 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China encompassing 46.1° (86.7–132.8° E) in longitude and 19.8° (32.6–52.4° N) in latitude. Leaf N concentrations decreased with precipitation, while leaf P concentrations decreased with temperature and increased with precipitation and soil total P concentrations. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentrations were less conserved than leaf N concentrations. At the community level, climate explained more interspecific variation of leaf nutrient concentrations, while soil nutrients explained most of the intraspecific variation. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits. New patterns were discovered using our observations on specific regions and vegetation types, which improved our knowledge of broad biogeographic patterns of leaf chemical traits.

2015 ◽  
Vol 12 (22) ◽  
pp. 18973-18998 ◽  
Author(s):  
X. Yang ◽  
X. Chi ◽  
C. Ji ◽  
H. Liu ◽  
W. Ma ◽  
...  

Abstract. Concentrations of leaf nitrogen (N) and phosphorus (P) are key leaf traits in ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on trees and grasses, leaving the knowledge gap for the stoichiometric patterns of shrubs. In this study, we explored the intra- and interspecific variations of leaf N and P concentration in relation to climate, soil property and evolutionary history based on 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China expanding 46.1° (86.7–132.8° E) in longitude and 19.8° (32.6–52.4° N) in latitude. The results showed that leaf N concentration decreased with precipitation, leaf P concentration decreased with temperature and increased with precipitation and soil P concentration. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentration was less conserved than leaf N concentration. At community level, climates explained more interspecific, while soil nutrient explained more intraspecific, variation of leaf nutrient concentrations. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits.


2012 ◽  
Vol 29 (No. 2) ◽  
pp. 51-55
Author(s):  
Tsipouridis CG ◽  
Simonis AD ◽  
S. Bladenopoulos ◽  
Issakidis AM ◽  
Stylianidis DC

Leaf samples from 12 peach cultivars (Prunus persica [L.] Batsch.) (Early Crest, May Crest, Flavor Crest,Sun Crest, Fayette, Katherina, Loadel, Andross, Everts, May Grand, Firebrite and Fairlane) grafted on four peach root-stocks were analyzed for their nutrient content. The analysis of variance for leaf nutrient concentrations indicated very significant effects and interactions among cultivars and rootstocks. The rootstock effect on the absorption of nutrient elements was higher for Ca, K, P, Mg, N, and lower for Cu, Zn, Fe, Mn, and B. Generally cultivars grafted on GF 677 had higher N, K, Fe, Cu and lower Zn, Mn, and B, while leaves from cultivars grafted on wild seedlings were found to contain higher Mg and lower P, K, Fe concentrations. Leaf B and Ca were higher for cultivars grafted on Sant Julien GF 655/2, while cultivars on Damas GF 1869 had higher P, Zn, Mn and lower N, B, Ca, Cu concentrations. Leaf N was lower for Fayette on all four rootstocks and significantly different from all other cultivars. Leaf P was lower for Everts and higher for Katherina. Lower concentrations were observed in Early Crest for Fe and Zn, in Andross for Mn, and in Loadel for B, while Flavor Crest had higher concentrations of all these elements. Leaf Zn was the highest for Sun Crest on wild seedling and the lowest for Early Crest on the same rootstock. Similarly leaf N was the highest for Katherina on Damas and the lowest for Fayetteon the same rootstock. Also leaf Mg was the highest for Fayette on Damas and the lowest for Fairlane on Damas. Peach tree mortality was the highest for Damas 1869 and lowest for Sant Julien. Also tree mortality was highest for Early Crest and Sun Crest and lowest for May Grand, Firebrite, and Katherina. The observed trends in the leaf nutrient composition, as regards the cultivars, rootstocks and their interactions, emphasize the importance of these factors on a new peach orchard establishment and macro-microelement fertilization.      


2017 ◽  
Vol 5 (5) ◽  
pp. 728-739 ◽  
Author(s):  
Di Tian ◽  
Zhengbing Yan ◽  
Karl J Niklas ◽  
Wenxuan Han ◽  
Jens Kattge ◽  
...  

Abstract Leaf nitrogen (N) and phosphorus (P) concentrations constrain photosynthetic and metabolic processes, growth and the productivity of plants. Their stoichiometry and scaling relationships regulate the allocation of N and P from subcellular to organism, and even ecosystem levels, and are crucial to the modelling of plant growth and nutrient cycles in terrestrial ecosystems. Prior work has revealed a general biogeographic pattern of leaf N and P stoichiometric relationships and shown that leaf N scales roughly as two-thirds the power of P. However, determining whether and how leaf N and P stoichiometries, especially their scaling exponents, change with functional groups and environmental conditions requires further verification. In this study, we compiled a global data set and documented the global leaf N and P concentrations and the N:P ratios by functional group, climate zone and continent. The global overall mean leaf N and P concentrations were 18.9 mg g−1 and 1.2 mg g−1, respectively, with significantly higher concentrations in herbaceous than woody plants (21.72 mg g−1 vs. 18.22 mg g−1 for N; and 1.64 mg g−1 vs. 1.10 mg g−1 for P). Both leaf N and P showed higher concentrations at high latitudes than low latitudes. Among six continents, Europe had the highest N and P concentrations (20.79 and 1.54 mg g−1) and Oceania had the smallest values (10.01 and 0.46 mg g−1). These numerical values may be used as a basis for the comparison of other individual studies. Further, we found that the scaling exponent varied significantly across different functional groups, latitudinal zones, ecoregions and sites. The exponents of herbaceous and woody plants were 0.659 and 0.705, respectively, with significant latitudinal patterns decreasing from tropical to temperate to boreal zones. At sites with a sample size ≥10, the values fluctuated from 0.366 to 1.928, with an average of 0.841. Several factors including the intrinsic attributes of different life forms, P-related growth rates and relative nutrient availability of soils likely account for the inconstant exponents of leaf N vs. P scaling relationships.


1995 ◽  
Vol 120 (6) ◽  
pp. 971-976 ◽  
Author(s):  
G.H. Neilsen ◽  
P. Parchomchuk ◽  
D. Neilsen ◽  
R. Berard ◽  
E.J. Hague

`Gala' apple (Malus domestica Borkh) on M.26 rootstock was subjected, in the first five growing seasons, to NP-fertigation and a factorial combination of treatments involving method and frequency of irrigation. Two types of emitters (drip or microjet) were used to apply the same quantity of water at high (daily), intermediate (about weekly) and low (about bi-weekly) irrigation frequencies. Although initial tree vigor and yield were higher for drip-fertigated trees, by the end of the study microjet fertigation produced larger trees of similar yield. These microjet fertigated trees had higher leaf P, K and Cu but lower leaf N, Mg, and Mn than drip-fertigated trees. Soil pH and extractable Mg and K concentrations were higher and extractable-P concentrations lower directly beneath microjet-emitters as a result of the larger fertigated soil volume relative to drip-emitters. High frequency irrigation improved tree growth but had less effect on leaf nutrient concentrations or soil chemical changes than lower frequency irrigation. Leaf N concentration was most affected by irrigation frequency, tending to decrease with daily irrigation.


HortScience ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 836-843 ◽  
Author(s):  
Bernadine C. Strik ◽  
Amanda J. Vance

Floricane-fruiting blackberry (Rubus L. subgenus Rubus, Watson) cultivars, ‘Marion’, ‘Black Diamond’, ‘Onyx’, ‘Columbia Star’ (early-season trailing types), ‘Ouachita’ (erect, midseason), and ‘Triple Crown’ and ‘Chester Thornless’ (semierect, late season) were studied for 2 years to determine whether these cultivars and types of blackberry should be sampled at a certain stage of development or time of season to best evaluate plant nutrient status. Leaf nutrient standards are based on primocane leaves in most countries, but there is interest in using floricane leaves. Primocane leaves were sampled every 2 weeks from late May through early October, whereas leaves on fruiting laterals (floricane) were sampled every 2 weeks from early May through fruit harvest. Leaves were analyzed to determine the concentration of macronutrients and micronutrients. The pattern of change in primocane leaf nutrient concentration varied between the trailing and the later-fruiting erect and semierect types, particularly for P, K, Ca, Mg, B, and Mn, where leaf levels were higher in the late season for the erect and semierect cultivars (except for P and K which were lower). Nutrient concentrations in floricane leaves decreased during growth and development of the lateral and fruiting season for N, P, K, and S, but increased for most other nutrients in all blackberry types. Floricane leaf N and K declined most rapidly during the fruit development period in all cultivars. Sampling of floricane leaves is not recommended, particularly for trailing types, as there are no sufficiency standards. In primocane leaves, the nutrients that did not show significant changes in concentration during the currently recommended sampling period of late July to early August were N, Mg, K, Ca, S, B, Mn, and Zn, but only in 2014. Leaf P, Fe, and Al were stable during this period in both years. In contrast, when sampling in mid to late August, leaf N, Mg, Fe, Mn, and Al were stable in both years and leaf K, Ca, S, B, Cu, and Zn were stable in one of the 2 years. We thus propose changing the recommended sampling time to mid to late August for these diverse blackberry cultivars. The current sufficiency standards for primocanes did not encompass the blackberry types and cultivars studied here, suggesting the standards may need to be revised for this region.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 945 ◽  
Author(s):  
Ran Tong ◽  
Benzhi Zhou ◽  
Lina Jiang ◽  
Xiaogai Ge ◽  
Yonghui Cao ◽  
...  

Leaf nitrogen (N) and phosphorus (P) stoichiometry at a large geographical scale is the result of long-term adaptation to the environment. Therefore, the patterns of leaf N and P spatial distributions and their controlling factors represent an important issue in current ecological research. To explore the leaf stoichiometry of Chinese fir at a national level, we conducted a meta-analysis based on the dataset of the leaf nitrogen (N) and phosphorus (P) concentrations and the N:P ratio from 28 study sites across China. For all of the age groups considered, the average concentrations of the leaf N and P concentrations and the N:P ratio were 11.94 mg g−1, 1.04 mg g−1, and 12.93, respectively. Significant differences were found in the leaf P concentration and N:P ratio between the five age groups, while the differences in the leaf N concentration between the groups were not significant. Linear fitting results indicated that the leaf P concentration decreased, and the leaf N:P ratio increased with the increase of the MAT (mean annual temperature) and soil N concentration. Redundancy analysis (RDA) revealed that the first axis, with an explanatory quantity of 0.350, indicated that the MAT (mean annual temperature), soil nitrogen concentration and stand age had a good relationship with the leaf P concentration and N:P ratio, while the second axis, with an explanatory quantity of 0.058, indicated that the leaf N concentration was less affected by the environmental factors. These results demonstrate that the leaf P concentration and N:P ratio are affected by the stand age, an uneven distribution of the heat and soil nutrient concentration status, and N, as the limiting element, remaining relatively stable. Overall, our findings revealed the response of leaf stoichiometric traits to environment change, which benefits the management of Chinese fir plantations.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1159g-1159
Author(s):  
John M. Smagula

Concentrations of nutrient elements in randomly selected soil samples taken at a 3-inch depth or the depth of the surface organic pad correlated poorly (R2= < 0.34) with leaf nutrient concentrations randomly selected from the same fields. Average leaf N concentrations in 74 of 79 fields sampled were above the 1.6% standard, while leaf P was below the 0.125% standard in 62 of the 79 fields. Leaf K, Ca, and Mg concentrations were above the standards 0.400%, 0.270%, and 0.130%, respectively in all fields. The average depth of the organic pad was 2.23 cm, ranging from 0 to 10.16 cm. Seventy five percent of the fields had organic pads 0.127-2.54 cm thick and 20% greater than 2.54 cm. In an attempt to improve correlations, leaves within a 0.01M2 quadrat were sampled from 110 clones in 10 commercial blueberry fields and leaf nutrient concentrations compared with nutrient concentrations in 3-inch soil samples taken directly beneath the quadrat. The strongest correlation was between soil Mn and leaf Mn (r2= o.59). Leaf samples, although more expensive than soil samples, appear to be a better indicator of lowbush blueberry fertilizer requirements than soil samples.


2006 ◽  
Vol 86 (4) ◽  
pp. 1037-1046 ◽  
Author(s):  
Yan Zhu ◽  
Yingxue Li ◽  
Wei Feng ◽  
Yongchao Tian ◽  
Xia Yao ◽  
...  

Non-destructive monitoring of leaf nitrogen (N) status can assist in growth diagnosis, N management and productivity forecast in field crops. The objectives of this study were to determine the relationships of leaf nitrogen concentration on a leaf dry weight basis (LNC) and leaf nitrogen accumulation per unit soil area (LNA) to ground-based canopy reflectance spectra, and to derive regression equations for monitoring N nutrition status in wheat (Triticum aestivum L.). Four field experiments were conducted with different N application rates and wheat cultivars across four growing seasons, and time-course measurements were taken on canopy spectral reflectance, LNC and leaf dry weights under the various treatments. In these studies, LNC and LNA in wheat increased with increasing N fertilization rates. The canopy reflectance differed significantly under varied N rates, and the pattern of response was consistent across the different cultivars and years. Overall, an integrated regression equation of LNC to normalized difference index (NDI) of 1220 and 710 nm of canopy reflectance spectra described the dynamic pattern of change in LNC in wheat. The ratios of several near infrared (NIR) bands to visible light were linearly related to LNA, with the ratio index (RI) of the average reflectance over 760, 810, 870, 950 and 1100 nm to 660 nm having the best index for quantitative estimation of LNA in wheat. When independent data were fit to the derived equations, the average root mean square error (RMSE) values for the predicted LNC and LNA relative to the observed values were no more than 15.1 and 15.2%, respectively, indicating a good fit. Our relationships of leaf N status to spectral indices of canopy reflectance can be potentially used for non-destructive and real-time monitoring of leaf N status in wheat. Key words: Wheat, leaf nitrogen concentration, leaf nitrogen accumulation, canopy reflectance, spectral index, nitrogen monitoring


1993 ◽  
Vol 50 (10) ◽  
pp. 2208-2221 ◽  
Author(s):  
Hunter J. Carrick ◽  
Claire L. Schelske ◽  
Frederick J. Aldridge ◽  
Michael F. Coveney

Excessive nutrient loads to aquatic systems can complicate otherwise predictable relationships between nutrient concentrations and phytoplankton biomass. We conducted six bioassays on surface phytoplankton assemblages collected from productive Lake Apopka, Florida, to measure the effect of nutrient reduction on phytoplankton growth and nutritional state. Lake water was mixed with one of three diluents to create a gradient of ambient nutrient concentrations; nitrogen (N) and phosphorus (P) limitation at each level of dilution was evaluated in a 2 × 2 factorial design. While the addition of N clearly increased the growth of phytoplankton in undiluted Lake Apopka water, the phytoplankton became more P limited with the reduction of particles (30–60% dilution). Regression of algal yields onto total P concentrations from our bottle experiments indicated that an 8 μg∙L−1 change in P leads to only a 1 μg∙L−1 change in chlorophyll yield, probably due to the high concentration of P in the lake. Because dilution influences factors in addition to ambient nutrient concentrations, results obtained with the technique must be carefully evaluated. Despite this, reduction of particles to improve water quality may, in concept, be a reasonable management scheme in lakes where a large fraction of the nutrients is particulate.


2011 ◽  
Vol 62 (6) ◽  
pp. 474 ◽  
Author(s):  
Tong-Chao Wang ◽  
B. L. Ma ◽  
You-Cai Xiong ◽  
M. Farrukh Saleem ◽  
Feng-Min Li

Optical sensing techniques offer an instant estimation of leaf nitrogen (N) concentration during the crop growing season. Differences in plant-moisture status, however, can obscure the detection of differences in N levels. This study presents a vegetation index that robustly measures differences in foliar N levels across a range of plant moisture levels. A controlled glasshouse study with maize (Zea mays L.) subjected to both water and N regimes was conducted in Ottawa, Canada. The purpose of the study was to identify spectral waveband(s), or indices derived from different wavebands, such as the normalised difference vegetation index (NDVI), that are capable of detecting variations in leaf N concentration in response to different water and N stresses. The experimental design includes three N rates and three water regimes in a factorial arrangement. Leaf chlorophyll content and spectral reflectance (400–1075 nm) were measured on the uppermost fully expanded leaves at the V6, V9 and V12 growth stages (6th, 9th and 12th leaves fully expanded). N concentrations of the same leaves were determined using destructive sampling. A quantitative relationship between leaf N concentration and the normalised chlorophyll index (normalised to well fertilised and well irrigated plants) was established. Leaf N concentration was also a linear function (R2 = 0.9, P < 0.01) of reflectance index (NDVI550, 760) at the V9 and V12 growth stages. Chlorophyll index increased with N nutrition, but decreased with water stress. Leaf reflectance at wavebands of 550 ± 5 nm and 760 ± 5 nm were able to separate water- and N-stressed plants from normal growing plants with sufficient water and N supply. Our results suggest that NDVI550, 760 and normalised chlorophyll index hold promise for the assessment of leaf N concentration at the leaf level of both normal and water-stressed maize plants.


Sign in / Sign up

Export Citation Format

Share Document