scholarly journals Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia

2017 ◽  
Vol 14 (18) ◽  
pp. 4209-4227 ◽  
Author(s):  
Johanne H. Rydsaa ◽  
Frode Stordal ◽  
Anders Bryn ◽  
Lena M. Tallaksen

Abstract. Increased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern Fennoscandia region. We have applied the Weather Research and Forecasting (WRF) model with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near-surface atmosphere at a fine resolution (5.4 km  ×  5.4 km). Perturbation experiments are performed in which we prescribe a gradual increase in taller vegetation in the alpine shrub and tree cover according to empirically established bioclimatic zones within the study region. We focus on the spring and summer atmospheric response. To evaluate the sensitivity of the atmospheric response to inter-annual variability in climate, simulations were conducted for two contrasting years, one warm and one cold. We find that shrub and tree cover increase leads to a general increase in near-surface temperatures, with the highest influence seen during the snowmelt season and a more moderate effect during summer. We find that the warming effect is stronger in taller vegetation types, with more complex canopies leading to decreases in the surface albedo. Counteracting effects include increased evapotranspiration, which can lead to increased cloud cover, precipitation, and snow cover. We find that the strength of the atmospheric feedback is sensitive to snow cover variations and to a lesser extent to summer temperatures. Our results show that the positive feedback to high-latitude warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions and will likely play an important role in land–atmosphere feedback processes in the future.

2016 ◽  
Author(s):  
Johanne H. Rydsaa ◽  
Frode Stordal ◽  
Anders Bryn ◽  
Lena M. Tallaksen

Abstract. Shrub expansion in high latitudes is a widely observed response to climate change. Extensive evidence has shown that shrub expansion can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity to a potential expansion in shrub and tree cover in the northern Fennoscandia region. Two perturbation experiments are performed in which we prescribe a gradual increase of vegetation height in the alpine shrub and tree cover according to empirically established climatic zones within the study region. The first experiment is based on present day climate, and the second is based on a future 1 K increase in temperature. To evaluate the sensitivity of the atmospheric response to inter-annual variations, simulations were conducted for two different years, one with warmer and one with colder spring and summer conditions. We have applied the Weather Research and Forecasting model (WRF) with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near surface atmosphere on a fine resolution (5.4 km x 5.4 km). We find that shrub cover increase leads to a general increase in near surface temperatures with the peak influence occurring during the snow melting season. It has the largest effect in spring, by advancing the onset of the melting season, and more moderate effect on summer temperature. We find that the net SW absorbed by the surface is sensitive to the shrub and tree heights, which act to strengthen the albedo decrease. Counteracting effects include increased snow cover and enhanced evapotranspiration causing increased cloud cover and precipitation. We find that the strength of the feedback effects resulting from increased shrub cover is more sensitive to snow cover variations than summer temperatures. Taller vegetation has a stronger influence on both spring and summer temperatures. Our results show that the positive feedback to high latitudes warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions, and will likely play an important role in the future.


2021 ◽  
Vol 13 (4) ◽  
pp. 655
Author(s):  
Animesh Choudhury ◽  
Avinash Chand Yadav ◽  
Stefania Bonafoni

The Himalayan region is one of the most crucial mountain systems across the globe, which has significant importance in terms of the largest depository of snow and glaciers for fresh water supply, river runoff, hydropower, rich biodiversity, climate, and many more socioeconomic developments. This region directly or indirectly affects millions of lives and their livelihoods but has been considered one of the most climatically sensitive parts of the world. This study investigates the spatiotemporal variation in maximum extent of snow cover area (SCA) and its response to temperature, precipitation, and elevation over the northwest Himalaya (NWH) during 2000–2019. The analysis uses Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra 8-day composite snow Cover product (MOD10A2), MODIS/Terra/V6 daily land surface temperature product (MOD11A1), Climate Hazards Infrared Precipitation with Station data (CHIRPS) precipitation product, and Shuttle Radar Topography Mission (SRTM) DEM product for the investigation. Modified Mann-Kendall (mMK) test and Spearman’s correlation methods were employed to examine the trends and the interrelationships between SCA and climatic parameters. Results indicate a significant increasing trend in annual mean SCA (663.88 km2/year) between 2000 and 2019. The seasonal and monthly analyses were also carried out for the study region. The Zone-wise analysis showed that the lower Himalaya (184.5 km2/year) and the middle Himalaya (232.1 km2/year) revealed significant increasing mean annual SCA trends. In contrast, the upper Himalaya showed no trend during the study period over the NWH region. Statistically significant negative correlation (−0.81) was observed between annual SCA and temperature, whereas a nonsignificant positive correlation (0.47) existed between annual SCA and precipitation in the past 20 years. It was also noticed that the SCA variability over the past 20 years has mainly been driven by temperature, whereas the influence of precipitation has been limited. A decline in average annual temperature (−0.039 °C/year) and a rise in precipitation (24.56 mm/year) was detected over the region. The results indicate that climate plays a vital role in controlling the SCA over the NWH region. The maximum and minimum snow cover frequency (SCF) was observed during the winter (74.42%) and monsoon (46.01%) season, respectively, while the average SCF was recorded to be 59.11% during the study period. Of the SCA, 54.81% had a SCF above 60% and could be considered as the perennial snow. The elevation-based analysis showed that 84% of the upper Himalaya (UH) experienced perennial snow, while the seasonal snow mostly dominated over the lower Himalaya (LH) and the middle Himalaya (MH).


2017 ◽  
Vol 145 (12) ◽  
pp. 4727-4745 ◽  
Author(s):  
Elena Tomasi ◽  
Lorenzo Giovannini ◽  
Dino Zardi ◽  
Massimiliano de Franceschi

The paper presents the results of high-resolution simulations performed with the WRF Model, coupled with two different land surface schemes, Noah and Noah_MP, with the aim of accurately reproducing winter season meteorological conditions in a typical Alpine valley. Accordingly, model results are compared against data collected during an intensive field campaign performed in the Adige Valley, in the eastern Italian Alps. In particular, the ability of the model in reproducing the time evolution of 2-m temperature and of incoming and outgoing shortwave and longwave radiation is examined. The validation of model results highlights that, in this context, WRF reproduces rather poorly near-surface temperature over snow-covered terrain, with an evident underestimation, during both daytime and nighttime. Furthermore it fails to capture specific atmospheric processes, such as the temporal evolution of the ground-based thermal inversion. The main cause of these errors lies in the miscalculation of the mean gridcell albedo, resulting in an inaccurate estimate of the reflected solar radiation calculated by both Noah and Noah_MP. Therefore, modifications to the initialization, to the land-use classification, and to both land surface models are performed to improve model results, by intervening in the calculation of the albedo, of the snow cover, and of the surface temperature. Qualitative and quantitative analyses show that, after these changes, a significant improvement in the comparability between model results and observations is achieved. In particular, outgoing shortwave radiation is lowered, 2-m temperature maxima increased accordingly, and ground-based thermal inversions are better captured.


2019 ◽  
Vol 34 (6) ◽  
pp. 1849-1865
Author(s):  
Francisco Salamanca Palou ◽  
Alex Mahalov

Abstract This paper examines summer- and wintertime variations of the surface and near-surface urban heat island (UHI) for the Phoenix metropolitan area using the Moderate Resolution Imaging Spectroradiometer (MODIS), near-surface meteorological observations, and the Weather Research and Forecasting (WRF) Model during a 31-day summer- and a 31-day wintertime period. The surface UHI (defined based on the urban–rural land surface temperature difference) is found to be higher at night and during the warm season. On the other hand, the morning surface UHI is low and frequently exhibits an urban cool island that increases during the summertime period. Similarly, the near-surface UHI (defined based on the urban–rural 2-m air temperature difference) is higher at night and during summertime. On the other hand, the daytime near-surface UHI is low but rarely exhibits an urban cool island. To evaluate the WRF Model’s ability to reproduce the diurnal cycle of near-surface meteorology and surface skin temperature, two WRF Model experiments (one using the Bougeault and Lacarrere turbulent scheme and one with the Mellor–Yamada–Janjić turbulent parameterization) at high spatial resolution (1-km horizontal grid spacing) are conducted for each 31-day period. Modeled results show that the WRF Model (coupled to the Noah-MP land surface model) tends to underestimate to some extent surface skin temperature during daytime and overestimate nighttime values during the wintertime period. In the same way, the WRF Model tends to accurately reproduce the diurnal cycle of near-surface air temperature, including maximum and minimum temperatures, and wind speed during summertime, but notably overestimates nighttime near-surface air temperature during wintertime. This nighttime overestimation is especially remarkable with the Bougeault and Lacarrere turbulent scheme for both urban and rural areas.


2017 ◽  
Vol 8 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Ramchandra Karki ◽  
Shabeh ul Hasson ◽  
Lars Gerlitz ◽  
Udo Schickhoff ◽  
Thomas Scholten ◽  
...  

Abstract. Mesoscale dynamical refinements of global climate models or atmospheric reanalysis have shown their potential to resolve intricate atmospheric processes, their land surface interactions, and subsequently, realistic distribution of climatic fields in complex terrains. Given that such potential is yet to be explored within the central Himalayan region of Nepal, we investigate the skill of the Weather Research and Forecasting (WRF) model with different spatial resolutions in reproducing the spatial, seasonal, and diurnal characteristics of the near-surface air temperature and precipitation as well as the spatial shifts in the diurnal monsoonal precipitation peak over the Khumbu (Everest), Rolwaling, and adjacent southern areas. Therefore, the ERA-Interim (0.75°) reanalysis has been dynamically refined to 25, 5, and 1 km (D1, D2, and D3) for one complete hydrological year (October 2014–September 2015), using the one-way nested WRF model run with mild nudging and parameterized convection for the outer but explicitly resolved convection for the inner domains. Our results suggest that D3 realistically reproduces the monsoonal precipitation, as compared to its underestimation by D1 but overestimation by D2. All three resolutions, however, overestimate precipitation from the westerly disturbances, owing to simulating anomalously higher intensity of few intermittent events. Temperatures are generally reproduced well by all resolutions; however, winter and pre-monsoon seasons feature a high cold bias for high elevations while lower elevations show a simultaneous warm bias. Unlike higher resolutions, D1 fails to realistically reproduce the regional-scale nocturnal monsoonal peak precipitation observed in the Himalayan foothills and its diurnal shift towards high elevations, whereas D2 resolves these characteristics but exhibits a limited skill in reproducing such a peak on the river valley scale due to the limited representation of the narrow valleys at 5 km resolution. Nonetheless, featuring a substantial skill over D1 and D2, D3 simulates almost realistic shapes of the seasonal and diurnal precipitation and the peak timings even on valley scales. These findings clearly suggest an added value of the convective-scale resolutions in realistically resolving the topoclimates over the central Himalayas, which in turn allows simulating their interactions with the synoptic-scale weather systems prevailing over high Asia.


2016 ◽  
Vol 18 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Kjetil Schanke Aas ◽  
Kjersti Gisnås ◽  
Sebastian Westermann ◽  
Terje Koren Berntsen

Abstract A mosaic approach to represent subgrid snow variation in a coupled atmosphere–land surface model (WRF–Noah) is introduced and tested. Solid precipitation is scaled in 10 subgrid tiles based on precalculated snow distributions, giving a consistent, explicit representation of variable snow cover and snow depth on subgrid scales. The method is tested in the Weather Research and Forecasting (WRF) Model for southern Norway at 3-km grid spacing, using the subgrid tiling for areas above the tree line. At a validation site in Finse, the modeled transition time from full snow cover to snow-free ground is increased from a few days with the default snow cover fraction formulation to more than 2 months with the tiling approach, which agrees with in situ observations from both digital camera images and surface temperature loggers. This in turn reduces a cold bias at this site by more than 2°C during the first half of July, with the noontime bias reduced from −5° to −1°C. The improved representation of subgrid snow variation also reduces a cold bias found in the reference simulation on regional scales by up to 0.8°C and increases surface energy fluxes (in particular the latent heat flux), and it resulted in up to 50% increase in monthly (June) precipitation in some of the most affected areas. By simulating individual soil properties for each tile, this approach also accounts for a number of secondary effects of uneven snow distribution resulting in different energy and moisture fluxes in different tiles also after the snow has disappeared.


2019 ◽  
Author(s):  
Lu Zhuo ◽  
Qiang Dai ◽  
Dawei Han ◽  
Ningsheng Chen ◽  
Binru Zhao

Abstract. This study assesses the usability of Weather Research and Forecasting (WRF) model simulated soil moisture for landslide monitoring in the Emilia Romagna region, northern Italy during the 10-year period between 2006 and 2015. Particularly three advanced Land Surface Model (LSM) schemes (i.e., Noah, Noah-MP and CLM4) integrated with the WRF are used to provide comprehensive multi-layer soil moisture information. Through the temporal evaluation with the in-situ soil moisture observations, Noah-MP is the only scheme that is able to simulate the large soil drying phenomenon close to the observations during the dry season, and it also has the highest correlation coefficient and the lowest RMSE at most soil layers. Each simulated soil moisture product from the three LSM schemes is then used to build a landslide threshold model, and within each model, 17 different exceedance probably levels from 1 % to 50 % are adopted to determine the optimal threshold scenario (in total there are 612 scenarios). Slope degree information is also used to separate the study region into different groups. The threshold evaluation performance is based on the landslide forecasting accuracy using 45 selected rainfall events between 2014–2015. Contingency tables, statistical indicators, and Receiver Operating Characteristic analysis for different threshold scenarios are explored. The results have shown that the slope information is very useful in identifying threshold differences, with the threshold becoming smaller for the steeper area. For landslide monitoring, Noah-MP at the surface soil layer with 30 % exceedance probability provides the best landslide monitoring performance, with its hitting rate at 0.769, and its false alarm rate at 0.289.


2021 ◽  
Author(s):  
Hajnalka Breuer ◽  
Zsuzsanna Zempléni ◽  
Ákos Varga

<p>Land use information is crucial in weather modelling as it determines the energy partitioning of the land surface. Based on the partitioning heating of near surface air and moisture supply of the planetary boundary layer is determined. These processes affect the general calculation of temperature, but it also has substantial effect on precipitation formation, especially on convective precipitation.</p><p>In this study the CORINE 44 categories are integrated into the WRF model. Usually the 44 land cover types are recategorized into a standard USGS or MODIS land use types. Here we present a dataset and application with the complete integration of the 44 types.</p><p>One-year runs are created with the CORINE land cover compared to the standard USGS dataset. Along with the new land cover types vegetation parameters had be defined as well. Four runs refer to a USGS-reference, CORINE2USGS converted, CORINE-USGS parameter, CORINE-newparameters where the effect of land cover and parameter change is analyzed. The modelled area covers the whole European region with 50 km resolution using the WRF 4.2 model. Regionally, on a monthly average 5-30% difference in precipitation and around 1 °C differences occur.</p><p>The research was supported by the Hungarian National Research, Development and Innovation Office, Grant No. FK132014. Hajnalka Breuer's work was additionally financed by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.</p>


2017 ◽  
Author(s):  
Min Huang ◽  
Gregory R. Carmichael ◽  
James H. Crawford ◽  
Armin Wisthaler ◽  
Xiwu Zhan ◽  
...  

Abstract. Land and atmospheric initial conditions of the Weather Research and Forecasting (WRF) model are often interpolated from a different model output. We perform case studies during NASA's SEAC4RS and DISCOVER-AQ Houston airborne campaigns, demonstrating that initializing the Noah land surface model directly using a coarser resolution dataset North American Regional Reanalysis (NARR) led to significant positive biases in the coupled NASA-Unified WRF (NUWRF, version 7)'s (near-) surface air temperature and planetary boundary layer height (PBLH) around the Missouri Ozarks and Houston, Texas, as well as poorly partitioned latent and sensible heat fluxes. Replacing the land initial conditions with the output from a long-term offline Land Information System (LIS) simulation can effectively reduce the positive biases in NUWRF's surface air temperature fields by ~ 2 °C. We also show that the LIS land initialization can modify the surface air temperature errors almost ten times as effectively as applying a different atmospheric initialization method. The LIS-NUWRF based isoprene emission calculations by the Model of Emissions of Gases and Aerosols from Nature (MEGAN, version 2.1) are at least 20 % lower than those computed using the NARR-initialized NUWRF run, and are closer to the aircraft observation-derived emissions. Higher resolution MEGAN calculations are prone to amplified errors on small scales, possibly resulted from some limitations of MEGAN's parameterization and its inputs' uncertainty. This study emphasizes the importance of proper land initialization to the coupled atmospheric weather modeling and the follow-on emission modeling, which we anticipate to be also critical to accurately representing other processes included in air quality modeling and chemical data assimilation. Having more confidence in the weather inputs is also beneficial for determining and quantifying the other sources of uncertainties (e.g., parameterization, other input data) of the models that they drive.


Sign in / Sign up

Export Citation Format

Share Document