scholarly journals Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean)

2019 ◽  
Vol 16 (21) ◽  
pp. 4307-4320 ◽  
Author(s):  
Sarah Paradis ◽  
Antonio Pusceddu ◽  
Pere Masqué ◽  
Pere Puig ◽  
Davide Moccia ◽  
...  

Abstract. Bottom trawling in the deep sea is one of the main drivers of sediment resuspension, eroding the seafloor and altering the content and composition of sedimentary organic matter (OM). The physical and biogeochemical impacts of bottom trawling were studied on the continental slope of the Gulf of Castellammare, Sicily (southwestern Mediterranean), through the analysis of two triplicate sediment cores collected at trawled and untrawled sites (∼550 m water depth) during the summer of 2016. Geochemical and sedimentological parameters (excess 210Pb, excess 234Th, 137Cs, dry bulk density, and grain size), elemental (organic carbon and nitrogen) and biochemical composition of sedimentary OM (proteins, carbohydrates, lipids), as well as its freshness (phytopigments) and degradation rates were determined in both coring locations. The untrawled site had a sedimentation rate of 0.15 cm yr−1 and presented a 6 cm thick surface mixed layer that contained siltier sediment with low excess 210Pb concentrations, possibly resulting from the resuspension, posterior advection, and eventual deposition of coarser and older sediment from adjacent trawling grounds. In contrast, the trawled site was eroded and presented compacted century-old sediment highly depleted in OM components, which were between 20 % and 60 % lower than those in the untrawled site. However, the upper 2 cm of the trawled site consisted of recently accumulated sediments enriched in excess 234Th, excess 210Pb, and phytopigments, while OM contents were similar to those from the untrawled core. This fresh sediment supported protein turnover rates of 0.025 d−1, which doubled those quantified in surface sediments of the untrawled site. The enhancement of remineralization rates in surface sediment of the trawled site was associated with the arrival of fresh particles on a chronically trawled deep-sea region that is generally deprived of OM. We conclude that the detrimental effects of bottom trawling can be temporarily and partially abated by the arrival of fresh and nutritionally rich OM, which stimulate the response of benthic communities. However, these ephemeral deposits are likely to be swiftly eroded due to the high trawling frequency over fishing grounds, highlighting the importance of establishing science-based management strategies to mitigate the impacts of bottom trawling.

2019 ◽  
Author(s):  
Sarah Paradis ◽  
Antonio Pusceddu ◽  
Pere Masqué ◽  
Pere Puig ◽  
Davide Moccia ◽  
...  

Abstract. Bottom trawling in the deep sea is one of the main drivers of sediment resuspension, eroding the deep seafloor and altering the content and composition of sedimentary organic matter (OM). The physical and biogeochemical impacts of bottom trawling on the seafloor were studied in the continental slope of the Gulf of Castellammare, Sicily (Southwestern Mediterranean) through the analysis of two triplicate sediment cores collected in trawled and untrawled sites (~ 550 m water depth) during the summer of 2016. Geochemical and sedimentological parameters (excess 210Pb, excess 234Th, 137Cs, dry bulk density, and grain size), elemental (organic carbon and nitrogen) and biochemical composition of sedimentary OM (proteins, carbohydrates, lipids), as well as its freshness (phytopigments) and degradation rates were determined in both coring locations. The untrawled site had a sedimentation rate of 0.15 cm yr−1 and presented a 6-cm thick surface mixed layer that contained coarser sediment with low excess 210Pb concentrations, possibly resulting from the resuspension, posterior advection, and eventual deposition of siltier and older sediment from adjacent trawling grounds. In contrast, the trawled site was characterized by highly eroded and compacted century-old sediment, as shown by the lack of excess 210Pb and high dry bulk densities. The continuous erosion in the trawled site has led to the depletion of OM, which were between 20 % and 60 % lower than those in the untrawled site, as well as to statistically significant differences in the biochemical composition of OM. Nevertheless, the upper 2 cm of the trawled site consisted of recently accumulated sediments, enriched in excess 234Th, excess 210Pb, and phytopigments, which had similar OM contents to surface sediments from the untrawled core. The arrival of fresh sediment in a chronically-trawled deep-sea site that is generally deprived of OM was associated with an enhancement of remineralization rates, reflected by protein turnover rates of 0.025 d−1, which doubled the rates quantified in surface sediments of the untrawled site. We conclude that the detrimental effects of bottom trawling can be temporarily and partially abated by the arrival of fresh and nutritionally-rich OM, which stimulate the response of benthic communities. However, these ephemeral deposits are likely to be swiftly eroded due to the high trawling frequency over fishing grounds, highlighting the importance of establishing management strategies to mitigate the impacts of bottom trawling.


2020 ◽  
Author(s):  
Gisela Horlitz ◽  
Stefano Bonaglia ◽  
Igor Eulaers ◽  
Ronnie N. Glud ◽  
Anna Sobek

<p>The biogeochemistry of deep-sea trenches is strongly influenced by their V-shape topography and tectonic position in the ocean, leading to a focusing effect of sediment and organic matter into the trench centre. Recent findings showed elevated mineralization rates in trench sediments, suggesting both high carbon turnover and organic matter degradation rates. As persistent organic pollutants (POPs) favourably partition to organic matter, deep-sea trenches act as a sink for these substances. Composition, source and age of the organic matter have been shown to have a significant influence on contaminant dynamics in sediment from more shallow regions. Also, the trophic status of marine systems plays a significant role in transport of POPs from air to water and to sediment. However, knowledge about organic pollutants in deep-sea environments is scarce. In the present study, sediment samples from two deep-sea trenches with different trophic states and deposition regimes are analysed for POPs with a wide range of physicochemical properties. Concentrations will be compared between the semi-eutrophic Atacama and the oligotrophic Kermadec Trench. Sampling of sediment cores was performed at the slope, abyssal plain and trench at Atacama (depth between 2,500 and 8,000m) and at the abyssal plain and trench at Kermadec (depth of 6,000 and 9,600m). The total organic carbon content largely varied between 0.3 and 2.1% at different sites at the Atacama Trench, while values were more homogeneous at the Kermadec Trench (around 0.3%). Preliminary results from the Atacama samples demonstrate concentrations of PCBs at the pg g<sup>-1</sup> dw level, and indicate highest concentrations to occur at the highest depth in the trench. Low sedimentation- and high mineralization rates in the trench centre, as well as the funnel-effect from the topology may explain these differences.</p>


2014 ◽  
Vol 11 (2) ◽  
pp. 201-216 ◽  
Author(s):  
S. K. Lengger ◽  
Y. A. Lipsewers ◽  
H. de Haas ◽  
J. S. Sinninghe Damsté ◽  
S. Schouten

Abstract. Thaumarchaeota are amongst the most abundant microorganisms in aquatic environments, however, their metabolism in marine sediments is still debated. Labeling studies in marine sediments have previously been undertaken, but focused on complex organic carbon substrates which Thaumarchaeota have not yet been shown to take up. In this study, we investigated the activity of Thaumarchaeota in sediments by supplying different 13C-labeled substrates which have previously been shown to be incorporated into archaeal cells in water incubations and/or enrichment cultures. We determined the incorporation of 13C-label from bicarbonate, pyruvate, glucose and amino acids into thaumarchaeal intact polar lipid-glycerol dibiphytanyl glycerol tetraethers (IPL-GDGTs) during 4–6 day incubations of marine sediment cores from three sites on the Iceland shelf. Thaumarchaeal intact polar lipids, in particular crenarchaeol, were detected at all stations and concentrations remained constant or decreased slightly upon incubation. No 13C incorporation in any IPL-GDGT was observed at stations 2 (clay-rich sediment) and 3 (organic-rich sediment). In bacterial/eukaryotic IPL-derived fatty acids at station 3, contrastingly, a large uptake of 13C label (up to + 80‰ ) was found. 13C was also respired during the experiment as shown by a substantial increase in the 13C content of the dissolved inorganic carbon. In IPL-GDGTs recovered from the sandy sediments at station 1, however, some enrichment in δ13C (1–4‰ ) was detected after incubation with bicarbonate and pyruvate. The low incorporation rates suggest a low activity of Thaumarchaeota in marine sediments and/or a low turnover rate of thaumarchaeal IPL-GDGTs due to their low degradation rates. Cell numbers and activity of sedimentary Thaumarchaeota based on IPL-GDGT measurements may thus have previously been overestimated.


2020 ◽  
Author(s):  
Antonio Pusceddu ◽  
Sarah Paradis ◽  
Davide Moccia ◽  
Pere Puig ◽  
Pere Masque ◽  
...  

<p>The impacts of bottom trawling on the structure of benthic communities can be relatively non-selective, hitting biodiversity as a whole. This holds true also in the deep sea, where the impacts of trawling can be more severe and long-lasting than in shallow-waters, due to the reduced capacity for recovery and greater vulnerability of deep-sea organisms. For years, our knowledge of the impact of trawling on deep-water ecosystems has remained limited and has focused mainly on fish stocks and hard bottom systems. More recently, a number of studies have addressed the impacts of bottom trawling in the deep-sea sedimentary environments, and very few of them have focused on the impacts on meiofauna, though it is a key faunal component of deep-sea ecosystems.</p><p>We investigated the impact of bottom trawling on the quantity, biochemical composition and nutritional value of sedimentary organic matter and meiofauna along the Sicilian Margin (Gulf of Castellammare, southwestern Mediterranean) at ca. 550 m depth, during the summer of 2016. Amount, biochemical composition and freshness of sedimentary OM, as well as the abundance and community composition of meiofauna were determined in sediment cores taken at both trawled and untrawled grounds. The continuous erosive processes in the trawled site have led, generally, to the depletion of OM contents (20-60% lower than those in the untrawled site), as well as to statistically significant differences from the untrawled site in its biochemical composition. Nevertheless, the upper 2 cm of the trawled site consisted of recently accumulated sediments, enriched in phytopigments, and bulk OM contents similar to those in the untrawled one, interpreted as a very recent input of fresh OM from the upper water column. The abundance of meiofauna in trawled grounds was significantly higher than that in untrawled ones, whereas no differences were observed between trawled and untrawled grounds deeper in the sediment. Differences in the meiofaunal community composition among sediment layers in each site were larger than those among sites.</p><p>As previously reported, deep bottom trawling in the Gulf of Castellammare erodes large volumes of sediment, exposing old compacted sediment that is depleted in OM. This erosive action generally prevents the accumulation of fresh sediment. However, the episodic short-lived deposition of fresh organic detritus between hauls can lead to a temporary accumulation of fresh and bioavailable OM which, in turn, can induce a positive response in meiofauna abundance.</p><p>These results pinpoint the need of considering the impacts of bottom trawling on the benthic communities of deep-sea sedimentary environments at temporal scales shorter than previously done.</p>


2013 ◽  
Vol 10 (12) ◽  
pp. 8093-8108 ◽  
Author(s):  
E. Sañé ◽  
J. Martín ◽  
P. Puig ◽  
A. Palanques

Abstract. Deep-sea ecosystems are in general adapted to a limited variability of physical conditions, resulting in high vulnerability and slow recovery rates from anthropogenic perturbations such as bottom trawling. Commercial trawling is the most recurrent and pervasive of human impacts on the deep-sea floor, but studies on its consequences on the biogeochemistry of deep-sea sediments are still scarce. Pigments, fatty acids, amino acids and carbohydrates were analysed in sediments from the flanks of the La Fonera (Palamós) submarine canyon (NW Mediterranean Sea), where a commercial bottom trawling fishery has been active for more than 70 yr. More specifically, we investigated how trawling-induced sediment reworking affects the quality of sedimentary organic matter which reaches the seafloor and accumulates in the sediment column, which is fundamental for the development of benthic communities. Sediment samples were collected during two oceanographic cruises in spring and autumn 2011. The sampled sites included trawl fishing grounds as well as pristine (control) areas. We report that bottom trawling in the flanks of the La Fonera Canyon has caused an alteration of the quality of the organic matter accumulated in the upper 5 cm of the seafloor. The use of a wide pool of biochemical tracers characterized by different reactivity to degradation allowed for us to discriminate the long-term effects of trawl-induced sediment reworking from the natural variability caused by the seasonal cycle of production and sinking of biogenic particles. Differences between untrawled and trawled areas were evidenced by labile amino acids, while differences between spring and autumn samples were detected only by the more labile indicators chlorophyll a and monounsaturated fatty acids. These results suggest that changes in the biochemical composition of the sedimentary organic matter caused by bottom trawling can be more relevant than those associated with natural seasonality and pose serious concerns about the ecological sustainability of deep-sea trawling activities.


2013 ◽  
Vol 10 (8) ◽  
pp. 12807-12847
Author(s):  
S. K. Lengger ◽  
Y. A. Lipsewers ◽  
H. de Haas ◽  
J. S. Sinninghe Damsté ◽  
S. Schouten

Abstract. Thaumarchaeota are amongst the most abundant microorganisms in aquatic environments, however, their metabolism in marine sediments is still debated. Labeling studies in marine sediments have previously been undertaken, but focused on complex organic carbon substrates which Thaumarchaeota have not yet been shown to take up. In this study, we investigated the activity of Thaumarchaeota in sediments by supplying different 13C-labeled substrates which have previously been shown to be incorporated into archaeal cells in water incubations and/or enrichment cultures. We determined the incorporation of 13C-label from bicarbonate, pyruvate, glucose and amino acids into thaumarchaeal intact polar lipid-glycerol dibiphytanyl glycerol tetraethers (IPL-GDGTs) during 4–6 day incubations of marine sediment cores from three different sites on the Iceland Shelf. Thaumarchaeal intact polar lipids were detected at all stations and concentrations remained constant or decreased slightly upon incubation. No 13C incorporation in any IPL-GDGT was observed at stations 2 (clay-rich sediment) and 3 (organic-rich sediment). In bacterial/eukaryotic IPL-derived fatty acids at station 3, contrastingly, a large uptake of 13C label (up to +80‰) was found. 13C was also respired during the experiment as shown by a substantial increase in the 13C content of the dissolved inorganic carbon. In IPL-GDGTs recovered from the sandy sediments at station 1, however, some enrichment in 13C (1–4‰) was detected after incubation with bicarbonate and pyruvate. The low incorporation rates suggest a low activity of Thaumarchaeota in marine sediments and/or a low turnover rate of thaumarchaeal IPL-GDGTs due to their low degradation rates. Cell numbers and activity of sedimentary Thaumarchaeota based on IPL-GDGT measurements may thus have previously been overestimated.


2021 ◽  
Vol 17 (3) ◽  
pp. 1025-1050
Author(s):  
Cécile L. Blanchet ◽  
Rik Tjallingii ◽  
Anja M. Schleicher ◽  
Stefan Schouten ◽  
Martin Frank ◽  
...  

Abstract. Ocean deoxygenation is a rising threat to marine ecosystems and food resources under present climate warming conditions. Organic-rich sapropel layers deposited in the Mediterranean Sea provide a natural laboratory to study the processes that have controlled changes in seawater oxygen levels in the recent geological past. Our study is based on three sediment cores spanning the last 10 000 years and located on a bathymetric transect offshore from the western distributaries of the Nile delta. These cores are partly to continuously laminated in the sections recording sapropel S1, which is indicative of bottom-water anoxia above the western Nile deep-sea fan. We used a combination of microfacies analyses and inorganic and organic geochemical measurements to reconstruct changes in oxygenation conditions at seasonal to millennial timescales. Millimetre-thick laminations are composed of detrital, biogenic and chemogenic sublayers reflecting seasonal successions of sedimentation. Dark layers reflect the deposition of summer floods and two types of light layers correspond to autumn plankton blooms and authigenic carbonates formed in the water column during spring–early summer, respectively. The isotopic signature of the authigenic carbonates suggests permanent anoxic to euxinic bottom waters resulting in high levels of anaerobic remineralization of organic matter and highlights their potential to reconstruct seawater chemistry at times when benthic fauna was absent. Ratios of major elements combined with biomarkers of terrestrial and marine organic matter and redox-sensitive compounds allow changes in terrigenous input, primary productivity and past deoxygenation dynamics on millennial timescales to be tracked. Rapid fluctuations of oxygenation conditions in the upper 700 m water depth occurred above the Nile deep-sea fan between 10 and 6.5 ka BP, while deeper cores recorded more stable anoxic conditions. Synchronous changes in terrigenous input, primary productivity and past oxygenation dynamics after 6.5 ka BP show that runoff-driven eutrophication played a central role in rapid oxygenation changes in the south-eastern Levantine Basin. These findings are further supported by other regional records and reveal time-transgressive changes in oxygenation state driven by rapid changes in primary productivity during a period of long-term deep-water stagnation.


Author(s):  
Monia Renzi ◽  
Francesca Provenza ◽  
Sara Pignattelli ◽  
Lucrezia Cilenti ◽  
Antonietta Specchiulli ◽  
...  

Transitional water ecosystems are targeted by the European Union (EU) Water Framework Directive (WFD, CE 2000/60) monitoring programs in coastal zones. Concerning sediments, activities performed for the WFD focus on a few variables concerning the biochemical composition of organic matter. Our research reports the effects of oxygen availability on the biochemical composition of organic matter in sediments to highlight levels of targeted variables in time and, according to the depth of sediment layer, both under oxygenated and anoxic conditions in a mesocosm study on sediment cores. Results provide evidence that tested factors of interest (i.e., disturbance type, oxygenic versus anoxic conditions; persistence time of disturbance, 0–14 days; penetration through sedimentary layers, 0–10 cm depth) are able to significantly affect the biochemical composition of organic matter in sediments. Large part of the variables considered in this study (total organic carbon (TOC), total phosphorous (TP), total sulphur (TS), Fe, carbohydrates (CHO), total proteins (PRT), biopolymeric carbon (BPC), chlorophyll-a (Chl-a) are significantly affected and correlated to the oxygenation levels and could be good early indicators of important changes of environmental conditions. Monitoring activities performed under WFD guidelines and management strategies of Mediterranean coastal lagoon ecosystems shall include the biochemical composition of organic matter in sediment to provide an exhaustive picture of such dynamic ecosystems.


2015 ◽  
Vol 6 (1/2) ◽  
Author(s):  
Antonio Pusceddu ◽  
Silvia Bianchelli ◽  
Roberto Danovaro

Bottom trawling represents nowadays one of the most severe anthropogenic disturbances at sea, and determines large impacts on benthic communities and processes. Bottom trawling determines also local sediment resuspension and the effects of the injection of large amounts of surface sediments into the water column have been repeatedly investigated. Few studies have assessed the consequences of sediment resuspension caused by bottom trawling on the quantity, biochemical composition and bioavailability of suspended organic particles and how these eventually rival those exerted by natural storms. To provide insights on this poorly addressed issue, we investigated concentrations and biochemical composition of total and enzymatically digestible pools of particulate organic matter (POM) in the Thermaikos Gulf (Mediterranean Sea) under calm sea conditions, during intensive trawling activities, and after a severe storm. We show here that sediment resuspension caused by trawling can cause large effects on POM quantity, biochemical composition and bioavailability. Both during trawling and after the storm, the relative importance of the carbohydrate pools increased (in the upper water column) and the total lipid concentrations decreased (in the intermediate and bottom layers) when compared to values measured during calm conditions. These results would suggest that bottom trawling could inject in the upper water column POM pools more refractory in nature (<em>e.g</em>., carbohydrates) than those present in calm or after-storm conditions. By contrast, we show also that the bioavailable fraction of biopolymeric C increased significantly during trawling in the upper water column of the shallowest stations and in the bottom water column layer of the deepest ones. These results provide evidence that bottom trawling can influence the overall trophic status of coastal waters, exerting effects similar or stronger than those caused by natural storms, though of variable amplitude depending on the water depth. Since bottom trawling is carried out worldwide and natural storms at sea can be frequent and intense, we claim for the need of assessing new adapting management strategies of bottom trawling in order to mitigate the synergistic impacts of anthropogenic and natural sediment resuspension on coastal biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document