scholarly journals Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter

Author(s):  
Monia Renzi ◽  
Francesca Provenza ◽  
Sara Pignattelli ◽  
Lucrezia Cilenti ◽  
Antonietta Specchiulli ◽  
...  

Transitional water ecosystems are targeted by the European Union (EU) Water Framework Directive (WFD, CE 2000/60) monitoring programs in coastal zones. Concerning sediments, activities performed for the WFD focus on a few variables concerning the biochemical composition of organic matter. Our research reports the effects of oxygen availability on the biochemical composition of organic matter in sediments to highlight levels of targeted variables in time and, according to the depth of sediment layer, both under oxygenated and anoxic conditions in a mesocosm study on sediment cores. Results provide evidence that tested factors of interest (i.e., disturbance type, oxygenic versus anoxic conditions; persistence time of disturbance, 0–14 days; penetration through sedimentary layers, 0–10 cm depth) are able to significantly affect the biochemical composition of organic matter in sediments. Large part of the variables considered in this study (total organic carbon (TOC), total phosphorous (TP), total sulphur (TS), Fe, carbohydrates (CHO), total proteins (PRT), biopolymeric carbon (BPC), chlorophyll-a (Chl-a) are significantly affected and correlated to the oxygenation levels and could be good early indicators of important changes of environmental conditions. Monitoring activities performed under WFD guidelines and management strategies of Mediterranean coastal lagoon ecosystems shall include the biochemical composition of organic matter in sediment to provide an exhaustive picture of such dynamic ecosystems.

Soil Research ◽  
2004 ◽  
Vol 42 (6) ◽  
pp. 515 ◽  
Author(s):  
Nicholas J. Ward ◽  
Leigh A. Sullivan ◽  
Richard T. Bush

Four acid sulfate soil (ASS) materials were subjected to anoxia after varying periods of oxidation to determine the geochemical response of these types of soils to flooding. The response of the partially oxidised ASS materials to the exclusion of oxygen was variable. The rate of sulfide oxidation, acidification, and the production of soluble oxidation products such as sulfate, iron, and aluminium generally decreased markedly when subjected to anoxia. However, especially in the highly acidic ASS materials (i.e. pH <3.5), sulfide oxidation and acidification generally continued (albeit at much slower rates), most probably due to oxidation by Fe3+. Rapid sulfide re-formation occurred in the peat ASS material that had been oxidised for 63 days, with 0.47% reduced inorganic sulfur (SCR) formed over 60 days of anoxia. This substantial sulfide re-formation was accompanied by only a slight increase in pH. Minimal sulfide re-formation occurred in 2 of the ASS materials when placed in anoxic conditions, most likely due to a lack of readily available organic matter in these materials. The results show that the imposition of anoxic conditions on partially oxidised ASS materials is generally effective in decreasing the rates of further sulfide oxidation, acidification, and the production of soluble sulfide oxidation products. Biogeochemical sulfide formation consumes acidity; however, sulfide re-formation was ineffective in reversing acidification under the conditions of this experiment. The results indicate that the treatment of sites containing actual ASS materials by management strategies relying on oxygen exclusion need to be accompanied by other strategies that include acidty neutralisation or containment.


2021 ◽  
Author(s):  
Sabyasachi Bhattacharya ◽  
Tarunendu Mapder ◽  
Svetlana Fernandes ◽  
Chayan Roy ◽  
Jagannath Sarkar ◽  
...  

Abstract. Marine sedimentation rate and bottom-water O2 concentration control the remineralization/sequestration of organic carbon across continental margins; but whether/how they shape microbiome architecture (the ultimate effector of all biogeochemical phenomena), across shelf/slope sediments, is unknown. Here we reveal distinct microbiome structures and functions, amidst comparable pore fluid chemistries, along 300 cm sediment horizons underlying the seasonal (shallow coastal) and perennial (deep sea) oxygen minimum zones (OMZs) of the Arabian Sea, situated across the western-Indian margin (water-depths: 31 m and, 530 and 580 m, respectively). The sedimentary geomicrobiology was elucidated by analyzing metagenomes, metatranscriptomes, and enrichment cultures, and also sedimentation rates measured by radiocarbon and lead excess (210Pbxs); the findings were then evaluated in the light of the other geochemical data available for the cores investigated. Along the perennial- and seasonal-OMZ sediment cores, microbial communities were dominated by Gammaproteobacteria and Alphaproteobacteria, and Euryarchaeota and Firmicutes, respectively. As a perennial-OMZ signature, a cryptic methane production-consumption cycle was found to operate near the sediment-surface (within the sulfate reduction zone); overall diversity, as well as the relative abundances of simple-fatty-acids-requiring anaerobes (methanogens, anaerobic methane-oxidizers, sulfate-reducers and acetogens), peaked in the topmost sediment-layer and then declined via synchronized fluctuations until the sulfate-methane transition zone was reached. The entire microbiome profile was reverse in the seasonal-OMZ sediment horizon. In the perennial-OMZ sediments organic carbon deposited was higher in concentration and marine components-rich, so it potentially degraded readily to simple fatty acids; lower sedimentation rate afforded higher O2 exposure time for organic matter degradation despite perennial hypoxia in the bottom-water; thus, the resultant abundance of reduced carbon substrates sustained multiple inter-competing microbial processes in the upper sediment-layers. Remarkably, the whole geomicrobial scenario was opposite in the sediments of the seasonal/shallow-water OMZ. Our findings create a microbiological baseline for understanding carbon-sulfur cycling across distinct marine depositional settings and water-column oxygenation regimes.


2020 ◽  
Author(s):  
Sabyasachi Bhattacharya ◽  
Tarunendu Mapder ◽  
Svetlana Fernandes ◽  
Chayan Roy ◽  
Jagannath Sarkar ◽  
...  

AbstractMarine sedimentation rate and bottom-water O2 concentration control the remineralization/sequestration of organic carbon across continental margins; but whether/how they shape microbiome architecture (the ultimate effector of all biogeochemical phenomena), across shelf/slope sediments, is unknown. Here we reveal distinct microbiome structures and functions, amidst comparable pore-fluid chemistries, along ~3 m sediment-horizons underlying the seasonal (shallow coastal) and perennial (deep sea) oxygen minimum zones (OMZs) of the Arabian Sea, situated across the western-Indian margin (water-depths: 31 m and, 530 and 580 m, respectively). Along the perennial- and seasonal-OMZ sediment-cores microbial communities were predominated by Gammaproteobacteria/Alphaproteobacteria and Euryarchaeota/Firmicutes respectively. As a perennial-OMZ signature, a cryptic methane production-consumption cycle was found to operate near the sediment-surface; overall diversity, as well as the relative abundances of simple-fatty-acids-requiring anaerobes (methanogens, anaerobic methane-oxidizers, sulfate-reducers and acetogens), peaked in the topmost sediment-layer and then declined via synchronized fluctuations until the sulfate-methane transition zone was reached. The entire microbiome profile was reverse in the seasonal-OMZ sediment-horizon. We discerned that in the perennial-OMZ sediments organic carbon deposited was higher in concentration, and marine components-rich, so it potentially degraded readily to simple fatty acids; lower sedimentation rate afforded higher O2 exposure time for organic matter degradation despite perennial hypoxia in the bottom-water; thus, the resultant abundance of reduced metabolites sustained multiple inter-competing microbial processes in the upper sediment-layers. Remarkably, the whole geomicrobial scenario was opposite in the sediments of the seasonal/shallow-water OMZ. Our findings create a microbiological baseline for understanding carbon-sulfur cycling across distinct marine depositional settings and water-colum n oxygenation regimes.


2019 ◽  
Vol 16 (21) ◽  
pp. 4307-4320 ◽  
Author(s):  
Sarah Paradis ◽  
Antonio Pusceddu ◽  
Pere Masqué ◽  
Pere Puig ◽  
Davide Moccia ◽  
...  

Abstract. Bottom trawling in the deep sea is one of the main drivers of sediment resuspension, eroding the seafloor and altering the content and composition of sedimentary organic matter (OM). The physical and biogeochemical impacts of bottom trawling were studied on the continental slope of the Gulf of Castellammare, Sicily (southwestern Mediterranean), through the analysis of two triplicate sediment cores collected at trawled and untrawled sites (∼550 m water depth) during the summer of 2016. Geochemical and sedimentological parameters (excess 210Pb, excess 234Th, 137Cs, dry bulk density, and grain size), elemental (organic carbon and nitrogen) and biochemical composition of sedimentary OM (proteins, carbohydrates, lipids), as well as its freshness (phytopigments) and degradation rates were determined in both coring locations. The untrawled site had a sedimentation rate of 0.15 cm yr−1 and presented a 6 cm thick surface mixed layer that contained siltier sediment with low excess 210Pb concentrations, possibly resulting from the resuspension, posterior advection, and eventual deposition of coarser and older sediment from adjacent trawling grounds. In contrast, the trawled site was eroded and presented compacted century-old sediment highly depleted in OM components, which were between 20 % and 60 % lower than those in the untrawled site. However, the upper 2 cm of the trawled site consisted of recently accumulated sediments enriched in excess 234Th, excess 210Pb, and phytopigments, while OM contents were similar to those from the untrawled core. This fresh sediment supported protein turnover rates of 0.025 d−1, which doubled those quantified in surface sediments of the untrawled site. The enhancement of remineralization rates in surface sediment of the trawled site was associated with the arrival of fresh particles on a chronically trawled deep-sea region that is generally deprived of OM. We conclude that the detrimental effects of bottom trawling can be temporarily and partially abated by the arrival of fresh and nutritionally rich OM, which stimulate the response of benthic communities. However, these ephemeral deposits are likely to be swiftly eroded due to the high trawling frequency over fishing grounds, highlighting the importance of establishing science-based management strategies to mitigate the impacts of bottom trawling.


2017 ◽  
Vol 68 (11) ◽  
pp. 2028 ◽  
Author(s):  
Ana Laura Pita ◽  
Luis Giménez ◽  
Noelia Kandratavicius ◽  
Pablo Muniz ◽  
Natalia Venturini

The benthic trophic status of Uruguayan coastal estuarine habitats (permanently open estuaries and open or closed coastal lagoons) was evaluated, twice in 1 year and at different spatial scales, using the amount and biochemical composition of the sedimentary organic matter. Nested hierarchical ANOVAs were applied to evaluate differences at the habitat level, among sites for each type of estuarine habitat (three estuaries and three lagoons) and between sectors located at different distances from the sea (inner v. outer sectors). Morphological and hydrodynamic differences between the two types of habitats explained site-to-site variations in eutrophic conditions in the open or closed coastal lagoons and meso-oligotrophic conditions in permanently open estuaries. These differences followed the patterns found for sediment grain size, with inner sectors (lower-energy areas) favouring the accumulation of finer sediments and higher amounts of degraded–detrital organic matter. In autumn, biochemical parameters indicated the dominance of aged and more degraded organic matter, with both types of habitats having a low nutritional value no matter which sector was considered. By contrast, in spring, biochemical composition showed the prevalence of fresh and more labile sedimentary organic matter with a high food value, especially in the outer sectors.


1989 ◽  
Vol 24 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Alena Mudroch ◽  
K. Hill

Abstract Sediment cores were collected in Lake St. Clair in 1985 and in the St. Clair River in 1986 to investigate the horizontal and vertical distribution and association of Hg in the sediments. A layer of recent sediment up to about 35 cm thick was differentiated by the geochemical composition and visual appearance from the underlying glacial-lacustrine deposits. The concentration of Hg in the surficial sediments in Lake St. Clair was lower in 1985 (&lt;0.025 to 1.200 µg/g) than that found in 1974 (&lt;0.20 to 3.00 µg/g). Up to 8.30 µg/g of Hg were found in the sediments collected from the nearshore area at Sarnia, Ontario, in the St. Clair River in 1986. The concentrations of Hg ranged from 5.05 to 16.00 µg/g in different sand-sized fractions (0.063 to 0.350 mm) of the sediment. The concentration of Hg was 17.80 µg/g in the silt-clay size fraction (&lt;0.063 mm). No relationship was found between the concentration of organic matter and Hg, and the concentration of silica and Hg in the St. Clair River sediments. The results indicated a relationship of Hg with particles of different mineralogical composition. Up to 3.72 µg/g Hg was found in the surface sediment in Chenal Ecarte. The greatest concentration of Hg (13.15 µg/g) existed in the 0.350 mm particle size fraction, which consisted mainly of small pieces of decaying wood. A good relationship was found between the concentration of Hg and organic matter in the sediment at this area.


2000 ◽  
Vol 57 (1) ◽  
pp. 25-33 ◽  
Author(s):  
C M Duarte ◽  
S Agustí ◽  
J Kalff

Examination of particulate light absorption and microplankton metabolism in 36 northeastern Spanish aquatic ecosystems, ranging from alpine rivers to inland saline lakes and the open Mediterranean Sea, revealed the existence of general relationships between particulate light absorption and the biomass of phytoplankton and microplankton metabolism. The particulate absorption spectra reflected a dominance of nonphotosynthetic, likely detrital, particles in rivers and a dominance of phytoplankton in coastal lagoons. There was a strong relationship between the light absorbed by phytoplankton and the chlorophyll a (Chl a) concentration of the systems, which indicated an average (±SE) Chl a specific absorption coefficient of 0.0233 ± 0.0020 m2·mg Chl a-1 for these widely diverse systems. Chl a concentration was a weaker predictor of the total particulate light absorption coefficient, pointing to an important role of nonphytoplanktonic particles in light absorption. Gross production was very closely related to the light absorption coefficient of phytoplankton, whereas community respiration was strongly correlated with the total particulate light absorption coefficient, indicating the optical signatures of sestonic particles to be reliable predictors of planktonic biomass and metabolism in aquatic ecosystems.


2018 ◽  
Vol 15 (1) ◽  
pp. 209-231 ◽  
Author(s):  
Stacy Deppeler ◽  
Katherina Petrou ◽  
Kai G. Schulz ◽  
Karen Westwood ◽  
Imojen Pearce ◽  
...  

Abstract. High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.


2017 ◽  
Vol 14 (7) ◽  
pp. 1825-1838 ◽  
Author(s):  
Anja Engel ◽  
Hannes Wagner ◽  
Frédéric A. C. Le Moigne ◽  
Samuel T. Wilson

Abstract. In the ocean, sinking of particulate organic matter (POM) drives carbon export from the euphotic zone and supplies nutrition to mesopelagic communities, the feeding and degradation activities of which in turn lead to export flux attenuation. Oxygen (O2) minimum zones (OMZs) with suboxic water layers (< 5 µmol O2 kg−1) show a lower carbon flux attenuation compared to well-oxygenated waters (> 100 µmol O2 kg−1), supposedly due to reduced heterotrophic activity. This study focuses on sinking particle fluxes through hypoxic mesopelagic waters (< 60 µmol O2 kg−1); these represent  ∼  100 times more ocean volume globally compared to suboxic waters, but they have less been studied. Particle export fluxes and attenuation coefficients were determined in the eastern tropical North Atlantic (ETNA) using two surface-tethered drifting sediment trap arrays with seven trapping depths located between 100 and 600 m. Data on particulate matter fluxes were fitted to the normalized power function Fz =  F100 (z∕100)−b, with F100 being the flux at a depth (z) of 100 m and b being the attenuation coefficient. Higher b values suggest stronger flux attenuation and are influenced by factors such as faster degradation at higher temperatures. In this study, b values of organic carbon fluxes varied between 0.74 and 0.80 and were in the intermediate range of previous reports, but lower than expected from seawater temperatures within the upper 500 m. During this study, highest b values were determined for fluxes of particulate hydrolyzable amino acids (PHAA), followed by particulate organic phosphorus (POP), nitrogen (PN), carbon (POC), chlorophyll a (Chl a) and transparent exopolymer particles (TEP), pointing to a sequential degradation of organic matter components during sinking. Our study suggests that in addition to O2 concentration, organic matter composition co-determines transfer efficiency through the mesopelagic. The magnitude of future carbon export fluxes may therefore also depend on how organic matter quality in the surface ocean changes under influence of warming, acidification and enhanced stratification.


2018 ◽  
Vol 15 (12) ◽  
pp. 3893-3908 ◽  
Author(s):  
Dina Spungin ◽  
Natalia Belkin ◽  
Rachel A. Foster ◽  
Marcus Stenegren ◽  
Andrea Caputo ◽  
...  

Abstract. The fate of diazotroph (N2 fixers) derived carbon (C) and nitrogen (N) and their contribution to vertical export of C and N in the western tropical South Pacific Ocean was studied during OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment). Our specific objective during OUTPACE was to determine whether autocatalytic programmed cell death (PCD), occurring in some diazotrophs, is an important mechanism affecting diazotroph mortality and a factor regulating the vertical flux of organic matter and, thus, the fate of the blooms. We sampled at three long duration (LD) stations of 5 days each (LDA, LDB and LDC) where drifting sediment traps were deployed at 150, 325 and 500 m depth. LDA and LDB were characterized by high chlorophyll a (Chl a) concentrations (0.2–0.6 µg L−1) and dominated by dense biomass of the filamentous cyanobacterium Trichodesmium as well as UCYN-B and diatom–diazotroph associations (Rhizosolenia with Richelia-detected by microscopy and het-1 nifH copies). Station LDC was located at an ultra-oligotrophic area of the South Pacific gyre with extremely low Chl a concentration (∼ 0.02 µg L−1) with limited biomass of diazotrophs predominantly the unicellular UCYN-B. Our measurements of biomass from LDA and LDB yielded high activities of caspase-like and metacaspase proteases that are indicative of PCD in Trichodesmium and other phytoplankton. Metacaspase activity, reported here for the first time from oceanic populations, was highest at the surface of both LDA and LDB, where we also obtained high concentrations of transparent exopolymeric particles (TEP). TEP were negatively correlated with dissolved inorganic phosphorus and positively coupled to both the dissolved and particulate organic carbon pools. Our results reflect the increase in TEP production under nutrient stress and its role as a source of sticky carbon facilitating aggregation and rapid vertical sinking. Evidence for bloom decline was observed at both LDA and LDB. However, the physiological status and rates of decline of the blooms differed between the stations, influencing the amount of accumulated diazotrophic organic matter and mass flux observed in the traps during our experimental time frame. At LDA sediment traps contained the greatest export of particulate matter and significant numbers of both intact and decaying Trichodesmium, UCYN-B and het-1 compared to LDB where the bloom decline began only 2 days prior to leaving the station and to LDC where no evidence for bloom or bloom decline was seen. Substantiating previous findings from laboratory cultures linking PCD to carbon export in Trichodesmium, our results from OUTPACE indicate that nutrient limitation may induce PCD in high biomass blooms such as displayed by Trichodesmium or diatom–diazotroph associations. Furthermore, PCD combined with high TEP production will tend to facilitate cellular aggregation and bloom termination and will expedite vertical flux to depth.


Sign in / Sign up

Export Citation Format

Share Document