scholarly journals Zooplankton faecal pellet transfer through the meso- and bathypelagic layers in the Southern Ocean in spring

2016 ◽  
Author(s):  
Anna Belcher ◽  
Clara Manno ◽  
Pete Ward ◽  
Stephanie Henson ◽  
Richard Sanders ◽  
...  

Abstract. The faecal pellets (FP) of zooplankton can be important vehicles for the transfer of particulate organic carbon (POC) to the deep ocean, often making large contributions to carbon sequestration. However, the routes by which these FP reach the deep ocean have yet to be fully resolved. We address this by comparing estimates of FP production to measurements of FP size, shape and number in the upper mesopelagic (175–205 m), using Marine Snow Catchers, and in the bathypelagic, using sediment traps (1,500–2,000 m). The study is focussed on the Scotia Sea, which contains some of the most productive regions in the Southern Ocean, where epipelagic FP production is likely to be high. We found that, although the size distribution of zooplankton suggests that high numbers of small FP are produced in the epipelagic, small FP are rare in the deeper layers, implying that they are not transferred efficiently to depth. Consequently, small FP make only a minor contribution to FP fluxes in the meso- and bathypelagic, particularly in terms of carbon. The dominant FP in the upper mesopelagic were cylindrical and elliptical, while ovoid FP were dominant in the bathypelagic. The change in FP morphology, as well as size distribution, points to the repacking of surface FP in the mesopelagic and in situ production in the lower meso- and bathypelagic, augmented by inputs of FP via zooplankton vertical migrations. The flux of carbon to the deeper layers within the Southern Ocean is therefore strongly modulated by meso- and bathypelagic zooplankton, meaning that the community structure in these zones has a major impact on the efficiency of FP transfer to depth.

2017 ◽  
Vol 14 (6) ◽  
pp. 1511-1525 ◽  
Author(s):  
Anna Belcher ◽  
Clara Manno ◽  
Peter Ward ◽  
Stephanie A. Henson ◽  
Richard Sanders ◽  
...  

Abstract. The faecal pellets (FPs) of zooplankton can be important vehicles for the transfer of particulate organic carbon (POC) to the deep ocean, often making large contributions to carbon sequestration. However, the routes by which these FPs reach the deep ocean have yet to be fully resolved. We address this by comparing estimates of copepod FP production to measurements of copepod FP size, shape, and number in the upper mesopelagic (175–205 m) using Marine Snow Catchers, and in the bathypelagic using sediment traps (1500–2000 m). The study is focussed on the Scotia Sea, which contains some of the most productive regions in the Southern Ocean, where epipelagic FP production is likely to be high. We found that, although the size distribution of the copepod community suggests that high numbers of small FPs are produced in the epipelagic, small FPs are rare in the deeper layers, implying that they are not transferred efficiently to depth. Consequently, small FPs make only a minor contribution to FP fluxes in the meso- and bathypelagic, particularly in terms of carbon. The dominant FPs in the upper mesopelagic were cylindrical and elliptical, while ovoid FPs were dominant in the bathypelagic. The change in FP morphology, as well as size distribution, points to the repacking of surface FPs in the mesopelagic and in situ production in the lower meso- and bathypelagic, which may be augmented by inputs of FPs via zooplankton vertical migrations. The flux of carbon to the deeper layers within the Southern Ocean is therefore strongly modulated by meso- and bathypelagic zooplankton, meaning that the community structure in these zones has a major impact on the efficiency of FP transfer to depth.


2014 ◽  
Vol 11 (11) ◽  
pp. 16105-16134 ◽  
Author(s):  
C. Manno ◽  
G. Stowasser ◽  
P. Enderlein ◽  
S. Fielding ◽  
G. A. Tarling

Abstract. The northern Scotia Sea contains the largest seasonal uptake of atmospheric carbon dioxide yet measured in the Southern Ocean. This study examines one of the main routes by which this carbon fluxes to the deep ocean, through the production of faecal pellets (FPs) by the zooplankton community. Deep sediment traps were deployed in two sites with contrasting ocean productivity regimes (P3, naturally iron-fertilized and P2, iron-limited), within the same water mass. The magnitude and seasonal pattern of particulate organic carbon (POC) and FPs in the traps was markedly different between the two sites. Maximum fluxes at P3 (22.91 mg C m−2 d−1; 2534 × 10 FP m−2 d−1) were an order of magnitude higher than at P2 (4.01 mg C m−2 d−1; 915 × 10 FP m−2 d−1), with flux at P3 exhibiting a double seasonal peak, compared to a single flatter peak at P2. The maximum contribution of FP carbon to the total amount of POC was twice as high at P3 (91%) compared to P2 (40%). The dominant FP category at P3 varied between round, ovoidal, cylindrical and tabular over the course of the year while, at P2, ovoidal FPs were consistently dominant, always making up more than 60% of the FP assemblage. There was also a difference in the FP state between the two sites, with FPs being relatively intact at P3, while FPs were often fragmented with broken peritrophic membranes at P2. The exception was ovoidal FPs, which were relatively intact at both sites. Our observations suggest that there was community shift from an herbivorous to an omnivorous diet from spring through to autumn at P3 while detritivores had a higher relative importance over the year at P2. Furthermore, the flux was mainly a product of the vertically migrating zooplankton community at P3 while the FP flux was more likely to be generated by deeper-dwelling zooplankton feeding on recycled material at P2. The results demonstrate that the feeding behavior and vertical distribution of the zooplankton community plays a critical role in controlling the magnitude of carbon export to the deep ocean in this region.


2015 ◽  
Vol 12 (6) ◽  
pp. 1955-1965 ◽  
Author(s):  
C. Manno ◽  
G. Stowasser ◽  
P. Enderlein ◽  
S. Fielding ◽  
G. A. Tarling

Abstract. The northern Scotia Sea contains the largest seasonal uptake of atmospheric carbon dioxide yet measured in the Southern Ocean. This study examines one of the main routes by which this carbon fluxes to the deep ocean: through the production of faecal pellets (FPs) by the zooplankton community. Deep sediment traps were deployed at two sites with contrasting ocean productivity regimes (P3, naturally iron-fertilized, and P2, iron-limited) within the same water mass. The magnitude and seasonal pattern of particulate organic carbon (POC) and FPs in the traps was markedly different between the two sites. Maximum fluxes at P3 (22.91 mg C m−2 d−1; 2534 FP m−2 d1) were 1 order of magnitude higher than at P2 (4.01 mg C m−2 d−1; 915 FP m−2 d1, with flux at P3 exhibiting a double seasonal peak, compared to a single flatter peak at P2. The maximum contribution of FP carbon to the total amount of POC was twice as high at P3 (91%) compared to P2 (40%). The dominant FP category at P3 varied between round, ovoidal, cylindrical and tabular over the course of the year, while, at P2, ovoidal FPs were consistently dominant, always making up more than 60% of the FP assemblage. There was also a difference in the FP state between the two sites, with FPs being relatively intact at P3, while FPs were often fragmented with broken peritrophic membranes at P2. The exception was ovoidal FPs, which were relatively intact at both sites. Our observations suggest that there was a community shift from a herbivorous to an omnivorous diet from spring through to autumn at P3, while detritivores had a higher relative importance over the year at P2. Furthermore, the flux was mainly a product of the vertically migrating zooplankton community at P3, while the FP flux was more likely to be generated by deeper-dwelling zooplankton feeding on recycled material at P2. The results demonstrate that the feeding behaviour and vertical distribution of the zooplankton community plays a critical role in controlling the magnitude of carbon export to the deep ocean in this region.


2018 ◽  
Vol 15 (6) ◽  
pp. 1843-1862 ◽  
Author(s):  
Andrés S. Rigual Hernández ◽  
José A. Flores ◽  
Francisco J. Sierro ◽  
Miguel A. Fuertes ◽  
Lluïsa Cros ◽  
...  

Abstract. The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001–2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001–2002; (2) coccoliths captured by the traps experienced weight and length reduction during summer (December–February); (3) the estimated annual coccolith weight of E. huxleyi at both sediment traps (2.11 ± 0.96 and 2.13 ± 0.91 pg at 2000 and 3700 m) was consistent with previous studies for morphotype B/C in other Southern Ocean settings (Scotia Sea and Patagonian shelf); and (4) coccolithophores accounted for approximately 2–5 % of the annual deep-ocean CaCO3 flux. Our results are the first annual record of coccolithophore abundance, composition and degree of calcification in the Antarctic zone. They provide a baseline against which to monitor coccolithophore responses to changes in the environmental conditions expected for this region in coming decades.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Manno ◽  
S. Fielding ◽  
G. Stowasser ◽  
E. J. Murphy ◽  
S. E. Thorpe ◽  
...  

AbstractAntarctic krill play an important role in biogeochemical cycles and can potentially generate high-particulate organic carbon (POC) fluxes to the deep ocean. They also have an unusual trait of moulting continuously throughout their life-cycle. We determine the krill seasonal contribution to POC flux in terms of faecal pellets (FP), exuviae and carcasses from sediment trap samples collected in the Southern Ocean. We found that krill moulting generated an exuviae flux of similar order to that of FP, together accounting for 87% of an annual POC flux (22.8 g m−2 y−1). Using an inverse modelling approach, we determined the krill population size necessary to generate this flux peaked at 261 g m−2. This study shows the important role of krill exuviae as a vector for POC flux. Since krill moulting cycle depends on temperature, our results highlight the sensitivity of POC flux to rapid regional environmental change.


2005 ◽  
Vol 62 (1) ◽  
pp. 25-32 ◽  
Author(s):  
David A. Demer ◽  
Stéphane G. Conti

Abstract Antarctic krill, Euphausia superba, comprises the foundation of the foodweb in the Southern Ocean and is the target of a large fishery. Recently, the total abundance of krill in the Scotia Sea was estimated from an international echosounder and net survey (CCAMLR 2000) to be 44.3 million metric tonnes (Mt; CV 11.4%) (Hewitt et al., 2002). The new biomass estimate prompted the Antarctic Treaty's Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) to revise the precautionary catch level for krill in the area from 1.5 to 4 Mt (SC-CAMLR, 2000). These survey results are based on the total echo energy attributed to krill, scaled by the Greene et al. (1991) model of krill acoustical reflectivity or target strength (TS). Presented here is a re-analysis of the CCAMLR 2000 data incorporating recent improvements in the characterization of krill TS. The results indicate that the estimated krill biomass in the Scotia Sea may be as high as 192.4 Mt (CV = 11.7%), or as low as 109.4 Mt (CV = 10.4%), depending solely on the expected distribution of krill orientations. The new Stochastic, Distorted-Wave, Born-Approximation (SDWBA) TS model solved with an empirically estimated distribution of in situ orientations leads to a krill-biomass estimate that is nearly 2.5 times the previous estimate. In consequence, revisions may be warranted of the standard krill TS model, the CCAMLR 2000 biomass estimate, and the associated precautionary catch level for krill in the Scotia Sea.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Eduardo Menschel ◽  
Humberto E. González

Abstract The role of appendicularian faecal pellet (FPa) size fractions on coccolithophore-derived particulate organic carbon (POC) and calcium carbonate (CaCO3) export to the deep sea was assessed from sediment traps within a period of ten years (1995–2004) off Coquimbo (CQ, 30°S) and five years (2005–2009) off Concepción (CC, 36°S) in the Humboldt Current System (HCS) off Chile. The composition and size distribution of 1,135 FPa samples from sediment traps deployed at 2,300 and 1,000 m depths showed non-linear, inverse relationships between the FPa size-fractions and their volume-specific POC and CaCO3 contents, which were up to ten times higher for small (<100 µm in diameter) than large (>100 µm) FPa. On average, 13 and 2% of the total POC and CaCO3 fluxes, respectively, were contributed mainly by small FPa (90%), with maxima during the autumn and summer. Thus, a non-linear, exponential model of volume-specific POC and CaCO3 contents of FPa substantially improved vertical flux rate estimates. In the HCS, annual carbon flux based on a non-linear FPa carbon load was double the estimate assuming a linear-volume to carbon load for FPa (345 and 172 kton C y−1). We recommend a widespread consideration of this non-linear model in global carbon estimates.


2021 ◽  
Vol 9 ◽  
Author(s):  
D. Zúñiga ◽  
A. Sanchez-Vidal ◽  
M. M. Flexas ◽  
D. Carroll ◽  
M. M. Rufino ◽  
...  

Physical and biogeochemical processes in the Southern Ocean are fundamental for modulating global climate. In this context, a process-based understanding of how Antarctic diatoms control primary production and carbon export, and hence global-ocean carbon sequestration, has been identified as a scientific priority. Here we use novel sediment trap observations in combination with a data-assimilative ocean biogeochemistry model (ECCO-Darwin) to understand how environmental conditions trigger diatom ecology in the iron-fertilized southern Scotia Sea. We unravel the role of diatoms assemblage in controlling the biogeochemistry of sinking material escaping from the euphotic zone, and discuss the link between changes in upper-ocean environmental conditions and the composition of settling material exported from the surface to 1,000 m depth from March 2012 to January 2013. The combined analysis of in situ observations and model simulation suggests that an anomalous sea-ice episode in early summer 2012–2013 favored (via restratification due to sea-ice melt) an early massive bloom of Corethron pennatum that rapidly sank to depth. This event drove high biogenic silicon to organic carbon export ratios, while modulating the carbon and nitrogen isotopic signals of sinking organic matter reaching the deep ocean. Our findings highlight the role of diatom ecology in modulating silicon vs. carbon sequestration efficiency, a critical factor for determining the stoichiometric relationship of limiting nutrients in the Southern Ocean.


2017 ◽  
Author(s):  
Andrés S. Rigual Hernández ◽  
José A. Flores ◽  
Francisco J. Sierro ◽  
Miguel A. Fuertes ◽  
Lluïsa Cros ◽  
...  

Abstract. The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium carbonate producing phytoplankton group, playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean, that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterized. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed in the deep ocean (~ 2000 and 3700 m) in the Australian sector of the Antarctic Zone for one year in 2001–02. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarized micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for Emiliania huxleyi morphotype B/C in the Antarctic Zone waters in 2001–2002; (2) coccolith assemblages experienced weight and length reduction during the summer months; (3) the estimated annual coccolith weight of E. huxleyi at both sediment trap depths (2.11 ± 0.96 and 2.13 ± 0.90 pg at 2000 m and 3700 m) was consistent with previous studies for morphotype B/C in other Southern Ocean settings; (4) coccolithophores accounted for approximately 2–5 % of the annual, deep-ocean CaCO3 flux. Our results are the first annual record of coccolithophore abundance, composition and degree of calcification in the Antarctic Zone. They provide a baseline against which to monitor coccolithophorid responses to changes in environmental conditions expected for this region in coming decades.


2015 ◽  
Vol 12 (11) ◽  
pp. 3171-3195 ◽  
Author(s):  
M. Rembauville ◽  
S. Blain ◽  
L. Armand ◽  
B. Quéguiner ◽  
I. Salter

Abstract. The biological composition of the material exported to a moored sediment trap located under the winter mixed layer of the naturally fertilized Kerguelen Plateau in the Southern Ocean was studied over an annual cycle. Despite iron availability in spring, the annual particulate organic carbon (POC) export (98.2 mmol m−2) at 289 m was low, but annual biogenic silica export was significant (114 mmol m−2). This feature was related to the abundance of empty diatom cells and the ratio of full to empty cells exerted a first-order control in BSi : POC export stoichiometry of the biological pump. Chaetoceros Hyalochaete spp. and Thalassiosira antarctica resting spores were responsible for more than 60% of the annual POC flux that occurred during two very short export events of < 14 days in spring–summer. Relatively low diatom fluxes were observed over the remainder of the year. Faecal pellet contribution to annual carbon flux was lower (34%) and reached its seasonal maximum in autumn and winter (> 80%). The seasonal progression of faecal pellet types revealed a clear transition from small spherical shapes (small copepods) in spring, to larger cylindrical and ellipsoid shapes in summer (euphausiids and large copepods) and finally to large tabular shapes (salps) in autumn and winter. We propose in this high-biomass, low-export (HBLE) environment that small but highly silicified and fast-sinking resting spores are able to bypass the intense grazing pressure and efficient carbon transfer to higher trophic levels that are responsible for the low fluxes observed the during the remainder of the year. More generally our study also provides a statistical framework linking the ecological succession of diatom and zooplankton communities to the seasonality of carbon and silicon export within an iron-fertilized bloom region in the Southern Ocean.


Sign in / Sign up

Export Citation Format

Share Document