scholarly journals Biological and biogeochemical methods for estimating bio-irrigation: a case study in the Oosterschelde estuary

2019 ◽  
Author(s):  
Emil De Borger ◽  
Justin Tiano ◽  
Ulrike Braeckman ◽  
Tom Ysebaert ◽  
Karline Soetaert

Abstract. Bio-irrigation, the exchange of solutes between overlying water and sediment by benthic organisms, plays an important role in sediment biogeochemistry. Quantification of bio-irrigation is done either through measurements with tracers, or more recently, using biological traits to derive the community (bio-) irrigation potential (IPc). Both these techniques were applied in a seasonal study of bio-irrigation in species communities of subtidal and intertidal habitats in a temperate estuary. A tracer time series with high-temporal resolution allowed to simultaneously estimate the pumping rate, and the sediment attenuation, a parameter that determines irrigation depth. We show that although the total pumping rate is similar in both intertidal and subtidal areas, there is deeper bio-irrigation in intertidal areas. This is explained by higher densities of bio-irrigators such as Corophium sp., Heteromastus filiformis and Arenicola marina in the intertidal, as opposed to the subtidal. The IPc correlated more strongly with the attenuation coefficient than the pumping rate, which highlights that this index reflects more the bio-irrigation depth rather than the rate.

2020 ◽  
Vol 17 (6) ◽  
pp. 1701-1715
Author(s):  
Emil De Borger ◽  
Justin Tiano ◽  
Ulrike Braeckman ◽  
Tom Ysebaert ◽  
Karline Soetaert

Abstract. Bioirrigation, the exchange of solutes between overlying water and sediment by benthic organisms, plays an important role in sediment biogeochemistry. Bioirrigation either is quantified based on tracer data or a community (bio)irrigation potential (IPc) can be derived based on biological traits. Both these techniques were applied in a seasonal study of bioirrigation in subtidal and intertidal habitats in a temperate estuary. The combination of a tracer time series with a high temporal resolution and a mechanistic model allowed for us to simultaneously estimate the pumping rate and the sediment attenuation, a parameter that determines irrigation depth. We show that, although the total pumping rate is similar in both intertidal and subtidal areas, there is deeper bioirrigation in intertidal areas. This is explained by higher densities of bioirrigators such as Corophium sp., Heteromastus filiformis and Arenicola marina in the intertidal, as opposed to the subtidal, areas. The IPc correlated more strongly with the attenuation coefficient than the pumping rate, which highlights that the IPc index reflects more the bioirrigation depth than the rate.


2013 ◽  
Vol 6 (12) ◽  
pp. 3613-3634 ◽  
Author(s):  
G. Masiello ◽  
C. Serio ◽  
I. De Feis ◽  
M. Amoroso ◽  
S. Venafra ◽  
...  

Abstract. The high temporal resolution of data acquisition by geostationary satellites and their capability to resolve the diurnal cycle allows for the retrieval of a valuable source of information about geophysical parameters. In this paper, we implement a Kalman filter approach to apply temporal constraints on the retrieval of surface emissivity and temperature from radiance measurements made from geostationary platforms. Although we consider a case study in which we apply a strictly temporal constraint alone, the methodology will be presented in its general four-dimensional, i.e., space-time, setting. The case study we consider is the retrieval of emissivity and surface temperature from SEVIRI (Spinning Enhanced Visible and Infrared Imager) observations over a target area encompassing the Iberian Peninsula and northwestern Africa. The retrievals are then compared with in situ data and other similar satellite products. Our findings show that the Kalman filter strategy can simultaneously retrieve surface emissivity and temperature with an accuracy of ± 0.005 and ± 0.2 K, respectively.


2020 ◽  
Author(s):  
Dimitry Van der Zande ◽  
Aida Alvera-Azcárate ◽  
Charles Troupin ◽  
João Cardoso Dos Santos ◽  
Dries Van den Eynde

<p>High-quality satellite-based ocean colour products can provide valuable support and insights in the management and monitoring of coastal ecosystems. Today’s availability of Earth Observation (EO) data is unprecedented including medium resolution ocean colour systems (e.g. Sentinel-3/OLCI), high resolution land sensors (e.g. Sentinel-2/MSI) and geostationary satellites (e.g. MSG/SEVIRI). Each of these sensors offers specific advantages in terms of spatial, temporal or radiometric characteristics. In the Multi-Sync project, we developed advanced ocean colour products (i.e. remote sensing reflectance, turbidity, and chlorophyll a concentration) through the synergetic use of these multi-scale EO data taking advantage of spectral characteristics of traditional medium resolution sensors, the high spatial resolution of some land sensors and the high temporal resolution of geostationary sensors.</p><p>To achieve this goal a multi-scale DINEOF (Data Interpolating Empirical Orthogonal Functions) approach was developed to reconstruct missing data using empirical orthogonal functions (EOF), reduce noise and exploit spatio-temporal coherency by joining several spatial and temporal resolutions. Here we present the capacity of DINEOF to extract multi-scale information through the integration of Sentinel-3, Sentinel-2 and SEVIRI datasets.</p><p>The functionality of the advanced multi-scale products will be demonstrated in a case study for the Belgian Coastal Zone (BCZ) highly relevant to the user community: sediment transport modelling near the harbour of Zeebrugge in support of dredging operations. As stated in the OSPAR treaty (1992), Belgium is obliged to monitor and evaluate the effects of all human activities on the marine ecosystem. Dredging activities in and near Belgian harbors fall under this treaty and are performed daily to ensure accessibility of the port by ships. Optimization of these dredging activities requires monitoring data which is typically acquired through in situ observations or modelling data. In this case study we take advantage of Sentinel-3, Sentinel-2 and SEVIRI data characteristics to provide a satellite product that meets the end user requirements in terms of product quality and temporal/spatial resolution.</p><p> </p>


2016 ◽  
Vol 20 (5) ◽  
pp. 1903-1910 ◽  
Author(s):  
Behzad Hessari ◽  
Adriana Bruggeman ◽  
Ali Mohammad Akhoond-Ali ◽  
Theib Oweis ◽  
Fariborz Abbasi

Abstract. Supplemental irrigation of rainfed winter crops improves and stabilises crop yield and water productivity. Although yield increases by supplemental irrigation are well established at the field level, its potential extent and impact on water resources at the basin level are less researched. This work presents a Geographic Information Systems (GIS)-based methodology for identifying areas that are potentially suitable for supplemental irrigation and a computer routine for allocating streamflow for supplemental irrigation in different sub-basins. A case study is presented for the 42 908 km2 upper Karkheh River basin (KRB) in Iran, which has 15 840 km2 of rainfed crop areas. Rainfed crop areas within 1 km from the streams, with slope classes 0–5, 0–8, 0–12, and 0–20 %, were assumed to be suitable for supplemental irrigation. Four streamflow conditions (normal, normal with environmental flow requirements, drought and drought with environmental flow) were considered for the allocation of water resources. Thirty-seven percent (5801 km2) of the rainfed croplands had slopes less than 5 %; 61 % (3559 km2) of this land was suitable for supplemental irrigation, but only 22 % (1278 km2) could be served with irrigation in both autumn (75 mm) and spring (100 mm), under normal flow conditions. If irrigation would be allocated to all suitable land with slopes up to 20 %, 2057 km2 could be irrigated. This would reduce the average annual outflow of the upper KRB by 9 %. If environmental flow requirements are considered, a maximum (0–20 % slopes) of 1444 km2 could receive supplemental irrigation. Under drought conditions a maximum of 1013 km2 could be irrigated, while the outflow would again be reduced by 9 %. Thus, the withdrawal of streamflow for supplemental irrigation has relatively little effect on the outflow of the upper KRB. However, if the main policy goal would be to improve rainfed areas throughout the upper KRB, options for storing surface water need to be developed.


2020 ◽  
Vol 16 (5) ◽  
pp. 1873-1887
Author(s):  
Siying Chen ◽  
Yun Su ◽  
Xiuqi Fang ◽  
Jia He

Abstract. Private diaries are important sources of historical data for research on climate change. Their advantages include a high veracity and reliability, accurate time and location information, a high temporal resolution, seasonal integrity, and rich content. In particular, these data are suitable for reconstructing short-term, high-resolution climate series and extreme climatic events. Through a case study of Yunshan Diary, authored by Bi Guo of the Yuan dynasty of China, this article demonstrates how to delve into climate information in diaries, including species distribution records, phenological records, daily weather descriptions and personal experiences of meteorological conditions. In addition, this article considers how to use these records, supplemented by other data, to reconstruct climate change and extreme climatic events on various timescales, from multidecadal to annual or daily. The study of Yunshan Diary finds that there was a relatively low amount of precipitation in central and southern Jiangsu Province in the summer of 1309; the winter of 1308–1309 was abnormally cold in the Taihu Lake basin. In the early 14th century at the latest, the climate in eastern China had begun to turn cold, which reflects the transition from the Medieval Warm Period to the Little Ice Age.


2008 ◽  
Vol 5 (6) ◽  
pp. 3169-3211 ◽  
Author(s):  
D. E. Reusser ◽  
T. Blume ◽  
B. Schaefli ◽  
E. Zehe

Abstract. The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physics-based model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns which can lead to the identification of model structural errors.


2021 ◽  
Author(s):  
Alberto Caldas-Alvarez ◽  
Samiro Khodayar ◽  
Peter Knippertz

Abstract. Heavy precipitation is one of the most devastating weather extremes in the western Mediterranean region. Our capacity to prevent negative impacts from such extreme events requires advancements in numerical weather prediction, data assimilation and new observation techniques. In this paper we investigate the impact of two state-of-the-art data sets with very high resolution, Global Positioning System-Zenith Total Delays (GPS-ZTD) with a 10 min temporal resolution and radiosondes with ~700 levels, on the representation of convective precipitation in nudging experiments. Specifically, we investigate whether the high temporal resolution, quality, and coverage of GPS-ZTDs can outweigh their lack of vertical information or if radiosonde profiles are more valuable despite their scarce coverage and low temporal resolution (24 h to 6 h). The study focuses on the Intensive Observation Period 6 (IOP6) of the Hydrological Cycle in the Mediterranean eXperiment (HyMeX; 24 September 2012). This event is selected due to its severity (100 mm/12 h), the availability of observations for nudging and validation, and the large observation impact found in preliminary sensitivity experiments. We systematically compare simulations performed with the COnsortium for Small scale MOdelling (COSMO) model assimilating GPS, high- and low vertical resolution radiosoundings in model resolutions of 7 km, 2.8 km and 500 m. The results show that the additional GPS and radiosonde observations cannot compensate errors in the model dynamics and physics. In this regard the reference COSMO runs have an atmospheric moisture wet bias prior to precipitation onset but a negative bias in rainfall, indicative of deficiencies in the numerics and physics, unable to convert the moisture excess into sufficient precipitation. Nudging GPS and high-resolution soundings corrects atmospheric humidity, but even further reduces total precipitation. This case study also demonstrates the potential impact of individual observations in highly unstable environments. We show that assimilating a low-resolution sounding from Nimes (southern France) while precipitation is taking place induces a 40 % increase in precipitation during the subsequent three hours. This precipitation increase is brought about by the moistening of the 700  hPa level (7.5 g kg−1) upstream of the main precipitating systems, reducing the entrainment of dry air above the boundary layer. The moist layer was missed by GPS observations and high-resolution soundings alike, pointing to the importance of profile information and timing. However, assimilating GPS was beneficial for simulating the temporal evolution of precipitation. Finally, regarding the scale dependency, no resolution is particularly sensitive to a specific observation type, however the 2.8 km run has overall better scores, possibly as this is the optimally tuned operational version of COSMO. In follow-up experiments the Icosahedral Nonhydrostatic Model (ICON) will be investigated for this case study to assert whether its numerical and physics updates, compared to its predecessor COSMO, are able to improve the quality of the simulations.


2009 ◽  
Vol 55 (No. 12) ◽  
pp. 578-590
Author(s):  
M. Turčáni ◽  
J. Patočka ◽  
M. Kulfan

The differences between oak lepidopteran communities were studied in Slovakia in 1993 and 1994. Sampling was undertaken between April and October on 3 oak species (<I>Quercus robur, Q. petraea, Q. rubra</I>). Biological traits of larvae were examined in order to explain differences in seasonal guilds among oaks. Communities varied in structure and abundance. Species richness in four seasonal guilds (flush, late spring, summer and autumn feeders) had a similar pattern on each of the studied oak species. The guild of flush feeders had the richest species assemblage, followed by the late spring feeder guild and both guilds were significantly richer than the summer feeder guild and autumn feeder guild.


2021 ◽  
Author(s):  
Barzan Ahmed ◽  
Farhad Abdulrahman Khoshnaw ◽  
Mustansar Raza ◽  
Hossam Elmoneim ◽  
Kamil Shehzad ◽  
...  

Abstract A case study is presented detailing the methodology used to perform the clean-out operation in a water disposal well of Khurmala Field, Kurdistan Region of Iraq. Untreated disposed water caused scaling and plugging in perforated liner and in the open hole that eventually ceased injection. Multiple attempts and investments were made in recent years to resume access to the injection zone using high-pressure hydro-jetting tools coupled with acid treatments. However, these attempts yielded futile efforts. Before proceeding with the decision of workover, it was decided to go for one final attempt to regain wellbore access using Fluidic Oscillator (SFO). Fluidic Oscillator (SFO) having pulsing, cavitation and helix jetting action was used in combination with a train of fluids consisting of diesel, 28% HCl and gel. The clean out was performed in stages of 10m, to clean the fill from 1091m to 1170m. Since the well bore was initially isolated from the injection zone, the cleanout was conducted with non-nitrified fluids. As the cleanout progressed and access to the liner and open hole was regained, the circulation of insoluble fill to surface required a lighter carrying fluid. Nitrification, volume of the fluids, batch cycling, and ROP were designed considering the downhole dynamic changes expected during each stage of the operation. The combination of SFO, the thorough selection of treatment fluids and the accurate downhole hydraulics simulations pertaining to different stages of the operation offered an effective solution and regained the connectivity between the wellbore and the injection zone. The injection rate of water increased from 0 bpm at 700 psi to 15 bpm at 200 psi. Throughout this operation, the SFO helix, cavitation, and acoustic pulse (alike) jetting proved to be more effective than other single acting rotating jetting tools. Also, Environmental impact was reduced by eliminating the need for a rig workover operation. The matching of the injection pressure when the well was first completed and the post job value indicated that the complete zone was exposed and scale deposits were removed from the critical matrix or bypassed. SFO has an effective jetting near wellbore region, while the kinetic energy transferred via fluid makes the impact stronger in the deeper region. Internal mechanism of the tool allows it to handle high pumping rate and pressures, external finishing offer multi-port orientation of outflow that allows targeting the fill in desired directions. Presently the SFO used in the case study is the only technology that has pulse, cavitation, and helix jetting structure. Also, since the tool does not require redressing, it proves to be an efficient, safe and cost effective alternative


Sign in / Sign up

Export Citation Format

Share Document