scholarly journals Eddy covariance carbon flux in a scrub in the Mexican highland

2020 ◽  
Author(s):  
Aurelio Guevara-Escobar ◽  
Enrique González-Sosa ◽  
Mónica Cervantes-Jiménez ◽  
Humberto Suzán-Azpiri ◽  
Mónica Elisa Queijeiro-Bolaños ◽  
...  

Abstract. Vegetation fixes C in its biomass through photosynthesis or might release it into the atmosphere through respiration. Measurements of these fluxes would help us understand ecosystem functioning. The eddy covariance technique (EC) is widely used to measure the net ecosystem exchange of C (NEE) which is the balance between gross primary production (GPP) and ecosystem respiration (Reco). Orbital satellites such as MODIS can also provide estimates of GPP. In this study, we measured NEE with the EC in a scrub at Bernal in Mexico, and then partitioned into gross primary production (GPP-EC) and Reco using the recent R package Reddyproc. Measurements of GPP-EC were related to the estimates from the MODIS satellite provided in product MOD17A2H, which contains data of the gross primary productivity (GPP-MODIS). The Bernal site was a carbon sink despite it was an overgrazed site, the average NEE during fifteen months of 2017 and 2018 was −0.78 g C m−2 d−1 and the flux was negative in all measured months. The GPP-MODIS underestimated the ground data when representing the relation with a Theil-Sen regression: GPP-EC = 1.866 + 1.861 GPP-MODIS; an ordinary less squares regression had similar coefficients and the R2 was 0.6. Although cacti (CAM), legume shrubs (C3) and herbs (C3) had a similar vegetation index, the nighttime flux was characterized by positive NEE suggesting that the photosynthetic dark-cycle flux of cacti was lower than Reco. The discrepancy among the GPP flux estimates stresses the need to understand the limitations of EC and remote sensors, while incorporating complementary monitoring and modelling schemes of nighttime Reco, particularly in the presence of species with different photosynthetic cycles.

2021 ◽  
Vol 18 (2) ◽  
pp. 367-392
Author(s):  
Aurelio Guevara-Escobar ◽  
Enrique González-Sosa ◽  
Mónica Cervantes-Jiménez ◽  
Humberto Suzán-Azpiri ◽  
Mónica Elisa Queijeiro-Bolaños ◽  
...  

Abstract. Arid and semiarid ecosystems contain relatively high species diversity and are subject to intense use, in particular extensive cattle grazing, which has favored the expansion and encroachment of perennial thorny shrubs into the grasslands, thus decreasing the value of the rangeland. However, these environments have been shown to positively impact global carbon dynamics. Machine learning and remote sensing have enhanced our knowledge about carbon dynamics, but they need to be further developed and adapted to particular analysis. We measured the net ecosystem exchange (NEE) of C with the eddy covariance (EC) method and estimated gross primary production (GPP) in a thorny scrub at Bernal in Mexico. We tested the agreement between EC estimates and remotely sensed GPP estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS), and also with two alternative modeling methods: ordinary-least-squares (OLS) regression and ensembles of machine learning algorithms (EMLs). The variables used as predictors were MODIS spectral bands, vegetation indices and products, and gridded environmental variables. The Bernal site was a carbon sink even though it was overgrazed, the average NEE during 15 months of 2017 and 2018 was −0.78 gCm-2d-1, and the flux was negative or neutral during the measured months. The probability of agreement (θs) represented the agreement between observed and estimated values of GPP across the range of measurement. According to the mean value of θs, agreement was higher for the EML (0.6) followed by OLS (0.5) and then MODIS (0.24). This graphic metric was more informative than r2 (0.98, 0.67, 0.58, respectively) to evaluate the model performance. This was particularly true for MODIS because the maximum θs of 4.3 was for measurements of 0.8 gCm-2d-1 and then decreased steadily below 1 θs for measurements above 6.5 gCm-2d-1 for this scrub vegetation. In the case of EML and OLS, the θs was stable across the range of measurement. We used an EML for the Ameriflux site US-SRM, which is similar in vegetation and climate, to predict GPP at Bernal, but θs was low (0.16), indicating the local specificity of this model. Although cacti were an important component of the vegetation, the nighttime flux was characterized by positive NEE, suggesting that the photosynthetic dark-cycle flux of cacti was lower than ecosystem respiration. The discrepancy between MODIS and EC GPP estimates stresses the need to understand the limitations of both methods.


2006 ◽  
Vol 3 (4) ◽  
pp. 571-583 ◽  
Author(s):  
D. Papale ◽  
M. Reichstein ◽  
M. Aubinet ◽  
E. Canfora ◽  
C. Bernhofer ◽  
...  

Abstract. Eddy covariance technique to measure CO2, water and energy fluxes between biosphere and atmosphere is widely spread and used in various regional networks. Currently more than 250 eddy covariance sites are active around the world measuring carbon exchange at high temporal resolution for different biomes and climatic conditions. In this paper a new standardized set of corrections is introduced and the uncertainties associated with these corrections are assessed for eight different forest sites in Europe with a total of 12 yearly datasets. The uncertainties introduced on the two components GPP (Gross Primary Production) and TER (Terrestrial Ecosystem Respiration) are also discussed and a quantitative analysis presented. Through a factorial analysis we find that generally, uncertainties by different corrections are additive without interactions and that the heuristic u*-correction introduces the largest uncertainty. The results show that a standardized data processing is needed for an effective comparison across biomes and for underpinning inter-annual variability. The methodology presented in this paper has also been integrated in the European database of the eddy covariance measurements.


2010 ◽  
Vol 7 (1) ◽  
pp. 429-462 ◽  
Author(s):  
C. Albergel ◽  
J.-C. Calvet ◽  
A.-L. Gibelin ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
...  

Abstract. In this work, a simple representation of the soil moisture effect on the ecosystem respiration is implemented into the A-gs version of the Interactions between Soil, Biosphere, and Atmosphere (ISBA) model. It results in an improvement of the modelled CO2 flux over a grassland, in southwestern France. The former temperature-only dependent respiration formulation used in ISBA-A-gs is not able to model the limitation of the respiration under dry conditions. In addition to soil moisture and soil temperature, the only parameter required in this formulation is the ecosystem respiration parameter Re25. It can be estimated by the mean of eddy covariance measurements of turbulent nighttime CO2 flux (i.e. ecosystem respiration). The resulting correlation between observed and modelled net ecosystem exchange is r2=0.63 with a bias of −2.18 μmol m−2 s−1. It is shown that when CO2 observations are not available, it is possible to use a more complex model, able to represent the heterotrophic respiration and all the components of the autotrophic respiration, to estimate Re25 with similar results. The modelled ecosystem respiration estimates are provided by the Carbon Cycle (CC) version of ISBA (ISBA-CC). ISBA-CC is a version of ISBA able to simulate all the respiration components whereas ISBA-A-gs uses a single equation for ecosystem respiration. ISBA-A-gs is easier to handle and more convenient than ISBA-CC for practical use in atmospheric or hydrological models. Surface water and energy flux observations as well as gross primary production (GPP) estimates are compared with model outputs. The dependence of GPP to air temperature is investigated. The observed GPP is less sensitive to temperature than the modelled GPP. Finally, the simulations of the ISBA-A-gs model are analysed over a seven year period (2001–2007). Modelled soil moisture and leaf area index (LAI) are confronted with the observed root-zone soil moisture content (m3 m−3), and with LAI estimates derived from surface reflectance measurements.


2019 ◽  
Vol 12 (2) ◽  
pp. 227-244 ◽  
Author(s):  
Egor A. Dyukarev ◽  
Evgeniy A. Godovnikov ◽  
Dmitriy V. Karpov ◽  
Sergey A. Kurakov ◽  
Elena D. Lapshina ◽  
...  

2017 ◽  
Author(s):  
Jannis von Buttlar ◽  
Jakob Zscheischler ◽  
Anja Rammig ◽  
Sebastian Sippel ◽  
Markus Reichstein ◽  
...  

Abstract. Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Yue Li ◽  
Zhongmei Wan ◽  
Li Sun

Climate change is accelerating its impact on northern ecosystems. Northern peatlands store a considerable amount of C, but their response to climate change remains highly uncertain. In order to explore the feedback of a peatland in the Great Hing’an Mountains to future climate change, we simulated the response of the overall net ecosystem exchange (NEE), ecosystem respiration (ER), and gross primary production (GPP) during 2020–2100 under three representative concentration pathways (RCP2.6, RCP6.0, and RCP8.5). Under the RCP2.6 and RCP6.0 scenarios, the carbon sink will increase slightly until 2100. Under the RCP8.5 scenario, the carbon sink will follow a trend of gradual decrease after 2053. These results show that when meteorological factors, especially temperature, reach a certain degree, the carbon source/sink of the peatland ecosystem will be converted. In general, although the peatland will remain a carbon sink until the end of the 21st century, carbon sinks will decrease under the influence of climate change. Our results indicate that in the case of future climate warming, with the growing seasons experiencing overall dryer and warmer environments and changes in vegetation communities, peatland NEE, ER, and GPP will increase and lead to the increase in ecosystem carbon accumulation.


2014 ◽  
Vol 11 (15) ◽  
pp. 4271-4288 ◽  
Author(s):  
J. B. Fisher ◽  
M. Sikka ◽  
W. C. Oechel ◽  
D. N. Huntzinger ◽  
J. R. Melton ◽  
...  

Abstract. Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for the Alaskan Arctic from four recent model intercomparison projects – NACP (North American Carbon Program) site and regional syntheses, TRENDY (Trends in net land atmosphere carbon exchanges), and WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project) – we provide a baseline of terrestrial carbon cycle uncertainty, defined as the multi-model standard deviation (σ) for each quantity that follows. Mean annual absolute uncertainty was largest for soil carbon (14.0 ± 9.2 kg C m−2), then gross primary production (GPP) (0.22 ± 0.50 kg C m−2 yr−1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m−2 yr−1), net primary production (NPP) (0.14 ± 0.33 kg C m−2 yr−1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m−2 yr−1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m−2 yr−1), net ecosystem exchange (NEE) (−0.01 ± 0.19 kg C m−2 yr−1), and CH4 flux (2.52 ± 4.02 g CH4 m−2 yr−1). There were no consistent spatial patterns in the larger Alaskan Arctic and boreal regional carbon stocks and fluxes, with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic and larger boreal region.


2010 ◽  
Vol 7 (5) ◽  
pp. 1657-1668 ◽  
Author(s):  
C. Albergel ◽  
J.-C. Calvet ◽  
A.-L. Gibelin ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
...  

Abstract. In this work, the rich dataset acquired at the SMOSREX experimental site is used to enhance the A-gs version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) model. A simple representation of the soil moisture effect on the ecosystem respiration is implemented in the ISBA-A-gs model. It results in an improvement of the modelled CO2 flux over a grassland in southwestern France. The former temperature-only dependent respiration formulation used in ISBA-A-gs is not able to model the limitation of the respiration under dry conditions. In addition to soil moisture and soil temperature, the only parameter required in this formulation is the ecosystem respiration parameter Re25. It can be estimated by means of eddy covariance measurements of turbulent nighttime CO2 flux (i.e. ecosystem respiration). The resulting correlation between observed and modelled net ecosystem exchange is r2=0.63 with a bias of −2.18 μmol m−2 s−1. It is shown that when CO2 observations are not available, it is possible to use a more complex model, able to represent the heterotrophic respiration and all the components of the autotrophic respiration, to estimate Re25 with similar results. The modelled ecosystem respiration estimates are provided by the Carbon Cycle (CC) version of ISBA (ISBA-CC). ISBA-CC is a version of ISBA able to simulate all the respiration components, whereas ISBA-A-gs uses a single equation for ecosystem respiration. ISBA-A-gs is easier to handle and more convenient than ISBA-CC for the practical use in atmospheric or hydrological models. Surface water and energy flux observations, as well as Gross Primary Production (GPP) estimates, are compared with model outputs. The dependence of GPP to air temperature is investigated. The observed GPP is less sensitive to temperature than the modelled GPP. Finally, the simulations of the ISBA-A-gs model are analysed over a seven year period (2001–2007). Modelled soil moisture and Leaf Area Index (LAI) are confronted with the observed surface and root-zone soil moisture content (m3 m−3), and with LAI estimates derived from surface reflectance measurements.


Sign in / Sign up

Export Citation Format

Share Document