scholarly journals The relative importance of photodegradation and biodegradation of terrestrially derived dissolved organic carbon across four lakes of differing trophic status

2020 ◽  
Author(s):  
Christopher M. Dempsey ◽  
Jennifer A. Brentrup ◽  
Sarah Magyan ◽  
Lesley B. Knoll ◽  
Hilary M. Swain ◽  
...  

Abstract. Outgassing of carbon dioxide (CO2) from freshwater ecosystems comprises 12–25 % of the total carbon flux from soils and bedrock. This CO2 is largely derived from both biodegradation and photodegradation of terrestrial dissolved organic carbon (DOC) entering lakes from wetlands and soils in the watersheds of lakes. In spite of the significance of these two processes in regulating rates of CO2 outgassing, their relative importance remains poorly understood in lake ecosystems. In this study, we used groundwater from the watersheds of one subtropical and three temperate lakes of differing trophic status to simulate the effects of increases in terrestrial DOC from storm events. We assessed the relative importance of biodegradation and photodegradation in oxidizing DOC to CO2. We measured changes in DOC concentration, the optical characteristics of the DOC (SUVA320 and Sr), dissolved oxygen, and dissolved inorganic carbon (DIC) in short-term experiments from May–August, 2016. In all lakes, photodegradation led to larger changes in DOC and DIC concentrations and optical characteristics than biodegradation. A descriptive discriminant analysis showed that in brown-water lakes, photodegradation led to the largest declines in DOC concentration. In these brown-water systems, ~ 30 % of the DOC was processed by sunlight and ~ 2 % was photo mineralized. In addition to documenting the importance of photodegradation in lakes, these results also highlight how lakes in the future may respond to changes in DOC inputs.

2020 ◽  
Vol 17 (24) ◽  
pp. 6327-6340
Author(s):  
Christopher M. Dempsey ◽  
Jennifer A. Brentrup ◽  
Sarah Magyan ◽  
Lesley B. Knoll ◽  
Hilary M. Swain ◽  
...  

Abstract. Outgassing of carbon dioxide (CO2) from freshwater ecosystems comprises 12 %–25 % of the total carbon flux from soils and bedrock. This CO2 is largely derived from both biodegradation and photodegradation of terrestrial dissolved organic carbon (DOC) entering lakes from wetlands and soils in the watersheds of lakes. In spite of the significance of these two processes in regulating rates of CO2 outgassing, their relative importance remains poorly understood in lake ecosystems. In this study, we used groundwater from the watersheds of one subtropical and three temperate lakes of differing trophic status to simulate the effects of increases in terrestrial DOC from storm events. We assessed the relative importance of biodegradation and photodegradation in oxidizing DOC to CO2. We measured changes in DOC concentration, colored dissolved organic carbon (specific ultraviolet absorbance – SUVA320; spectral slope ratio – Sr), dissolved oxygen, and dissolved inorganic carbon (DIC) in short-term experiments from May–August 2016. In all lakes, photodegradation led to larger changes in DOC and DIC concentrations and optical characteristics than biodegradation. A descriptive discriminant analysis showed that, in brown-water lakes, photodegradation led to the largest declines in DOC concentration. In these brown-water systems, ∼ 30 % of the DOC was processed by sunlight, and a minimum of 1 % was photomineralized. In addition to documenting the importance of photodegradation in lakes, these results also highlight how lakes in the future may respond to changes in DOC inputs.


2020 ◽  
Author(s):  
Eero Asmala ◽  
Christopher Osburn ◽  
Ryan Paerl ◽  
Hans Paerl

<p>The transport of dissolved organic carbon from land to ocean is a large and dynamic component of the global carbon cycle. Export of dissolved organic carbon from watersheds is largely controlled by hydrology, and is exacerbated by increasing major rainfall and storm events, causing pulses of terrestrial dissolved organic carbon (DOC) to be shunted through rivers downstream to estuaries. Despite this increasing trend, the fate of the pulsed terrestrial DOC in estuaries remains uncertain. Here we present DOC data from 1999 to 2017 in Neuse River Estuary (NC, USA) and analyze the effect of six tropical cyclones (TC) during that period on the quantity and fate of DOC in the estuary. We find that that TCs promote a considerable increase in DOC concentration near the river mouth at the entrance to the estuary, on average an increase of 200 µmol l<sup>-1</sup> due to storms was observed. TC-induced increases in DOC are apparent throughout the estuary, and the duration of these elevated DOC concentrations ranges from one month at the river mouth to over six months in lower estuary. Our results suggest that despite the fast mineralization rates, the terrestrial DOC is processed only to a minor extent relative to the pulsed amount entering the estuary. We conclude that the vast quantity of organic carbon delivered to estuaries by TCs transform estuaries from active biogeochemical processing “reactors” of organic carbon to appear more like passive shunts due to the sheer amount of pulsed material rapidly flushed through the estuary.</p>


Soil Research ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 465 ◽  
Author(s):  
DJ Chittleborough ◽  
KRJ Smettem ◽  
E Cotsaris ◽  
FW Leaney

The pathways of dissolved organic carbon (DOC) through a podzolic soil (Xeralf) with strong texture contrast are described. During winter, most of the DOC passes through macropores in the profile and flows laterally through the B horizons. During summer the presence of dry, hydrophobic organic matter on the soil surface and the A1 horizon causes DOC to flow overland. DOC concentrations vary seasonally. Highest concentrations are measured during summer overland flow. For all horizons, the longer the dry period the greater the DOC concentration in the subsequent flow. During storm events there is a marked flushing effect in the B horizons but in the A horizon and the surface, DOC concentrations tend to rise. There was a marked decrease in DOC concentration in flow from the B3 compared to the upper horizons. This may be due to adsorption by fine clays lining the macropores.


2015 ◽  
Vol 9 (2) ◽  
pp. 737-752 ◽  
Author(s):  
M. Fritz ◽  
T. Opel ◽  
G. Tanski ◽  
U. Herzschuh ◽  
H. Meyer ◽  
...  

Abstract. Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km2. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.


2011 ◽  
Vol 8 (12) ◽  
pp. 3661-3675 ◽  
Author(s):  
M. I. Stutter ◽  
D. G. Lumsdon ◽  
A. P. Rowland

Abstract. Moorland carbon reserves in organo-mineral soils may be crucial to predicting landscape-scale variability in soil carbon losses, an important component of which is dissolved organic carbon (DOC). Surface water DOC trends are subject to a range of scaling, transport and biotic processes that disconnect them from signals in the catchment's soils. Long-term soil datasets are vital to identify changes in DOC release at source and soil C depletion. Here we show, that moorland soil solution DOC concentrations at three key UK Environmental Change Network sites increased between 1993–2007 in both surface- and sub- soil of a freely-draining Podzol (48 % and 215 % increases in O and Bs horizons, respectively), declined in a gleyed Podzol and showed no change in a Peat. Our principal findings were that: (1) considerable heterogeneity in DOC response appears to exist between different soils that is not apparent from the more consistent observed trends for streamwaters, and (2) freely-draining organo-mineral Podzol showed increasing DOC concentrations, countering the current scientific focus on soil C destabilization in peats. We discuss how the key solubility controls on DOC associated with coupled physico-chemical factors of ionic strength, acid deposition recovery, soil hydrology and temperature cannot readily be separated. Yet, despite evidence that all sites are recovering from acidification the soil-specific responses to environmental change have caused divergence in soil DOC concentration trends. The study shows that the properties of soils govern their specific response to an approximately common set of broad environmental drivers. Key soil properties are indicated to be drainage, sulphate and DOC sorption capacity. Soil properties need representation in process-models to understand and predict the role of soils in catchment to global C budgets. Catchment hydrological (i.e. transport) controls may, at present, be governing the more ubiquitous rises in river DOC concentration trends, but soil (i.e. source) controls provide the key to prediction of future C loss to waters and the atmosphere.


2008 ◽  
Vol 5 (6) ◽  
pp. 1615-1623 ◽  
Author(s):  
S. Fiedler ◽  
B. S. Höll ◽  
A. Freibauer ◽  
K. Stahr ◽  
M. Drösler ◽  
...  

Abstract. Numerous studies have dealt with carbon (C) contents in Histosols, but there are no studies quantifying the relative importance of the individual C components in pore waters. For this study, measurements were taken of all the carbon components (particulate organic carbon, POC; dissolved organic carbon, DOC; dissolved inorganic carbon, DIC; dissolved methane, CH4) in the soil pore water of calcareous fens under three different water management regimes (re-wetted, deeply and moderately drained). Pore water was collected weekly or biweekly (April 2004 to April 2006) at depths between 10 and 150 cm. The main results obtained were: (1) DIC (94–280 mg C l−1) was the main C-component. (2) POC and DOC concentrations in the pore water (14–125 mg C l−1 vs. 41–95 mg C l−1) were pari passu. (3) Dissolved CH4 was the smallest C component (0.005–0.9 mg C l−1). Interestingly, about 30% of the POM particles were colonized by microbes indicating that they are active in the internal C turnover. Certainly, both POC and DOC fractions are essential components of the C budget of peatlands. Furthermore, dissolved CO2 in all forms of DIC appears to be an important part of peatland C-balance.


Sign in / Sign up

Export Citation Format

Share Document