scholarly journals Episodic subduction patches in the western North Pacific identified from BGC-Argo float Data

2021 ◽  
Author(s):  
Shuangling Chen ◽  
Mark L. Wells ◽  
Rui Xin Huang ◽  
Huijie Xue ◽  
Jingyuan Xi ◽  
...  

Abstract. Subduction associated with mesoscale eddies is an important but difficult to observe process that can efficiently export carbon and oxygen to the mesopelagic zone (100–1000 db). Using a novel BGC-Argo dataset covering the western North Pacific (20–50° N, 120–180° E), we identified imprints of episodic subduction using anomalies in dissolved oxygen and spicity, a water mass marker. These subduction patches were present in 4.0 % (288) of the total profiles (7,120) between 2008 and 2019, situated mainly in the Kuroshio Extension region between March and August (70.6 %). Unlike eddy subduction processes observed at higher latitudes, roughly half (52 %) of these episodic events injected carbon- and oxygen-enriched waters below the annual permanent thermocline depth (450 db), with > 20 % occurring deeper than 600 db. Export rates within these subductions are estimated to be on the order of 85–159 mg C m−2 day−1 and 175 to 417 mg O2 m−2 day−1. These mesoscale events would markedly increase carbon removal above that due to biological gravitational settling as well as oxygen ventilation in the region, both helping to support the nutritional and metabolic demands of mesopelagic organisms. Climate-driven patterns of increasing eddy kinetic energies in this region imply that the magnitude of these processes will grow in the future, meaning that these unexpectedly effective small-scale subduction processes need to be better constrained in global climate and biogeochemical models.

2021 ◽  
Vol 18 (19) ◽  
pp. 5539-5554
Author(s):  
Shuangling Chen ◽  
Mark L. Wells ◽  
Rui Xin Huang ◽  
Huijie Xue ◽  
Jingyuan Xi ◽  
...  

Abstract. Subduction associated with mesoscale eddies is an important but difficult-to-observe process that can efficiently export carbon and oxygen to the mesopelagic zone (100–1000 dbar). Using a novel BGC-Argo dataset covering the western North Pacific (20–50∘ N, 120–180∘ E), we identified imprints of episodic subduction using anomalies in dissolved oxygen and spicity, a water mass marker. These subduction patches were present in 4.0 % (288) of the total profiles (7120) between 2008 and 2019, situated mainly in the Kuroshio Extension region between March and August (70.6 %). Roughly 31 % and 42 % of the subduction patches were identified below the annual permanent pycnocline depth (300 m vs. 450 m) in the subpolar and subtropical regions, respectively. Around half (52 %) of these episodic events injected oxygen-enriched waters below the maximum annual permanent thermocline depth (450 dbar), with >20 % occurring deeper than 600 dbar. Subduction patches were detected during winter and spring when mixed layers are deep. The oxygen inventory within these subductions is estimated to be on the order of 64 to 152 g O2/m2. These mesoscale events would markedly increase oxygen ventilation as well as carbon removal in the region, both processes helping to support the nutritional and metabolic demands of mesopelagic organisms. Climate-driven patterns of increasing eddy kinetic energies in this region imply that the magnitude of these processes will grow in the future, meaning that these unexpectedly effective small-scale subduction processes need to be better constrained in global climate and biogeochemical models.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2012 ◽  
Vol 25 (10) ◽  
pp. 3476-3493 ◽  
Author(s):  
Young-Hyang Park ◽  
Jong-Hwan Yoon ◽  
Yong-Hoon Youn ◽  
Frédéric Vivier

Abstract On the basis of a new East Asian winter monsoon (EAWM) index and by analyzing the relationship between sea surface temperature (SST) anomalies and different atmospheric and oceanic factors in winter, this study investigates the causes of the recent unusual warming in the western North Pacific Ocean. Analyses presented here emphasize the dual contribution from the atmosphere and ocean to the local SST variability, with the relative importance of each contributor varying with the period and place. During the period 1970–89, the EAWM, controlled mostly by the Siberian high, is predominantly responsible for the SST variability in most of the western North Pacific, whereas in the period 1990–2005 ocean dynamics become increasingly important in most places or even dominant in the Kuroshio–Oyasio Extension (KOE) region. The delayed response of the KOE SST to basinwide wind stress curl forcing via Rossby waves is epoch dependent and is significant at lags of 1, 3, and 4 yr before 1990 but only at 1 yr afterward. This epoch dependency of the impact of Rossby waves is related to the different locations of the centers of action of wind stress curl in the midlatitude North Pacific between the two epochs. In addition, mean advection of the EAWM-driven anomalous SST from the southern East China Sea, which can be transported into the KOE region in about a year by the Kuroshio, likely affects the KOE SST lagged by 1 yr. The strongest positive SST trend observed in the western North Pacific results from the combined effects of the abrupt weakening of the EAWM due to the unprecedented decline of the Siberian high and the increasing role of the ocean. The latter is best evidenced by the 1-yr delayed response of the western North Pacific via the gyre circulation adjustment to the basinwide decadal-scale wind stress curl change associated with the northward shift of the strengthened Aleutian low.


2011 ◽  
Vol 41 (4) ◽  
pp. 666-681 ◽  
Author(s):  
Eitarou Oka ◽  
Toshio Suga ◽  
Chiho Sukigara ◽  
Katsuya Toyama ◽  
Keishi Shimada ◽  
...  

Abstract Hydrographic data obtained by high-resolution shipboard observations and Argo profiling floats have been analyzed to study the mesoscale structure and circulation of the North Pacific Subtropical Mode Water (STMW). The float data show that in the late winter of 2008, STMW having a temperature of approximately 18.8°, 17.7°, and 16.6°C formed west of 140°E, at 140°–150°E, and east of 150°E, respectively, in the recirculation gyre south of the Kuroshio Extension. After spring, the newly formed STMW gradually shift southward, decreasing in thickness. Simultaneously, the STMWs of 16.6° and 17.7°C are gradually stirred and then mixed in terms of properties. In late fall, they seem to be integrated to form a single group of STMWs having a temperature centered at 17.2°C. Such STMW circulation in 2008 is much more turbulent than that in 2006, which was investigated in a previous study. The difference between the two years is attributed to the more variable state of the Kuroshio Extension in 2008, associated with stronger eddy activities in the STMW formation region, which enhance the eddy transport of STMW. High-resolution shipboard observations were carried out southeast of Japan at 141°–147°E in the early fall of 2008. To the south of the Kuroshio Extension, STMW exists as a sequence of patches with a horizontal scale of 100–200 km, whose thick portions correspond well to the mesoscale deepening of the permanent pycnocline. The western (eastern) hydrographic sections are occupied mostly by the 17.7°C (16.6°C) STMW, within which the 16.6°C (17.7°C) STMW exists locally, mostly at locations where both the permanent pycnocline depth and the STMW thickness are maximum. This structure implies that the STMW patches are transported away from their respective formation sites, corresponding to a shift in the mesoscale anticyclonic circulations south of the Kuroshio Extension. Furthermore, 20%–30% of the observed STMW pycnostads have two or three potential vorticity minima, mostly near temperatures of 16.6° and 17.7°C. The authors presume that such a structure formed as a result of the interleaving of the 16.6° and 17.7°C STMWs after they are stirred by mesoscale circulations, following which they are vertically mixed to form the 17.2°C STMW observed in late fall. These results indicate the importance of horizontal processes in destroying the vertically uniform structure of STMW after spring, particularly when the Kuroshio Extension is in a variable state.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuichiro Kumamoto ◽  
Michio Aoyama ◽  
Yasunori Hamajima ◽  
Tatsuo Aono ◽  
Shinya Kouketsu ◽  
...  

2015 ◽  
Vol 28 (12) ◽  
pp. 4950-4970 ◽  
Author(s):  
Xiaohui Ma ◽  
Ping Chang ◽  
R. Saravanan ◽  
Dexing Wu ◽  
Xiaopei Lin ◽  
...  

Abstract Boreal winter (November–March) extreme flux events in the Kuroshio Extension region (KER) of the northwestern Pacific and the Gulf Stream region (GSR) of the northwestern Atlantic are analyzed and compared, based on NCEP Climate Forecast System Reanalysis (CFSR), NCEP–NCAR reanalysis, and NOAA Twentieth Century Reanalysis data, as well as the observationally derived OAFlux dataset. These extreme flux events, most of which last less than 3 days, are characterized by cold air outbreaks (CAOs) with an anomalous northerly wind that brings cold and dry air from the Eurasian and North American continents to the KER and GSR, respectively. A close relationship between the extreme flux events over KER (GSR) and the Aleutian low pattern (ALP) [east Atlantic pattern (EAP)] is found with more frequent occurrence of the extreme flux events during a positive ALP (EAP) phase and vice versa. A further lag-composite analysis suggests that the ALP (EAP) is associated with accumulated effects of the synoptic winter storms accompanied by the extreme flux events and shows that the event-day storms tend to have a preferred southeastward propagation path over the North Pacific (Atlantic), potentially contributing to the southward shift of the storm track over the eastern North Pacific (Atlantic) basin during the ALP (EAP) positive phase. Finally, lag-regression analyses indicate a potential positive influence of sea surface temperature (SST) anomalies along the KER (GSR) on the development of the extreme flux events in the North Pacific (Atlantic).


Sign in / Sign up

Export Citation Format

Share Document