scholarly journals Modelling the effect of aggregates on N<sub>2</sub>O emission from denitrification in an agricultural peat soil

2011 ◽  
Vol 8 (9) ◽  
pp. 2649-2663 ◽  
Author(s):  
P. C. Stolk ◽  
R. F. A. Hendriks ◽  
C. M. J. Jacobs ◽  
E. J. Moors ◽  
P. Kabat

Abstract. Nitrous oxide (N2O) emissions are highly variable in time, with high peak emissions lasting a few days to several weeks and low background emissions. This temporal variability is poorly understood which hampers the simulation of daily N2O emissions. In structured soils, like clay and peat, aggregates hamper the diffusion of oxygen, which leads to anaerobic microsites in the soil, favourable for denitrification. Diffusion of N2O out of the aggregates is also hampered, which leads to delayed emissions and increased reduction of N2O to N2. In this model simulation study we investigate the effect of aggregates in soils on the N2O emissions. We present a parameterization to simulate the effects of aggregates on N2O production by denitrification and on N2O reduction. The parameterization is based on the mobile-immobile model concept. It was implemented in a field-scale hydrological-biogeochemical model combination. We compared the simulated fluxes with observed fluxes from a fertilized and drained peat soil under grass. The results of this study show that aggregates strongly affect the simulated N2O emissions: peak emissions are lower, whereas the background emissions are slightly higher. Including the effect of aggregates caused a 40% decrease in the simulated annual emissions relative to the simulations without accounting for the effects of aggregates. The new parameterization significantly improved the model performance regarding simulation of observed daily N2O fluxes; r2 and RMSE improved from 0.11 and 198 g N2O-N ha−1 d−1 to 0.41 and 40 g N2O-N ha−1 d−1, respectively. Our analyses of the model results show that aggregates have a larger impact on the reduction than on the production of N2O. Reduction of N2O is more sensitive to changes in the drivers than production of N2O and is in that sense the key to understanding N2O emissions from denitrification. The effects of changing environmental conditions on reduction of N2O relative to N2O production strongly depend on the NO3 content of the soil. More anaerobic conditions have hardly any effect on the ratio of production to reduction if NO3 is abundant, but will decrease this ratio if NO3 is limiting. In the first case the emissions will increase, whereas in the second case the emissions will decrease. This study suggests that the current knowledge of the hydrological, biogeochemical and physical processes may be sufficient to understand the observed N2O fluxes from a fertilized clayey peatland. Further research is needed to test how aggregates affect the N2O fluxes from other soils or soils with different fertilization regimes.

2011 ◽  
Vol 8 (2) ◽  
pp. 3253-3287 ◽  
Author(s):  
P. C. Stolk ◽  
R. F. A. Hendriks ◽  
C. M. J. Jacobs ◽  
E. J. Moors ◽  
P. Kabat

Abstract. Nitrous oxide (N2O) emissions are highly variable in time, with high peak emissions lasting as couple of days to weeks and low background emissions. This temporal variability is poorly understood which hampers the simulation of daily N2O emissions. In structured soils, like clay and peat, aggregates hamper the diffusion of oxygen, which leads to anaerobic microsites in the soil, favourable for denitrification. In this paper we studied the effect of aggregates in soils on the N2O emissions from denitrification. We presented a parameterization to simulate the effects of aggregates on N2O, following the mobile-immobile model concept. This parameterization was implemented in a field-scale hydrological-biogeochemical model combination. We compared the simulated fluxes with observed fluxes from a fertilized and drained peat soil with grass. The results of this study showed that aggregates strongly affect N2O emissions: peak emissions are lower, whereas the background emissions are slightly higher. Implementation of the effect of aggregates caused a decrease in the simulated annual emissions of more than 40%. The new parameterization also significantly improved the model performance to simulate observed N2O fluxes. Aggregates have more impact on the reduction of N2O than on the production of N2O. Reduction of N2O is more sensitive to changes in the drivers than production of N2O and is in that sense the key process to understand N2O emissions from denitrification. The effects of changing conditions on reduction of N2O relative to N2O production is dependent on the NO3 content of the soil. It is expected that in soils with a low NO3 content the influence of aggregates on the NO3 concentration is not negligible. This study showed that the current knowledge of the hydrological, biogeochemical and physical processes is sufficient to understand the observed N2O fluxes from a fertilized peatland. Further research is needed to test how aggregates affect the N2O fluxes in areas or periods with little NO3 in the soil.


2015 ◽  
Vol 12 (13) ◽  
pp. 4133-4148 ◽  
Author(s):  
J. Martinez-Rey ◽  
L. Bopp ◽  
M. Gehlen ◽  
A. Tagliabue ◽  
N. Gruber

Abstract. The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known about how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. Assuming nitrification as the dominant N2O formation pathway, we implemented two different parameterizations of N2O production which differ primarily under low-oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high-CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12 % in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 TgN yr−1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the oxygen minimum zones (OMZs), i.e., in the eastern tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production, associated primarily with denitrification. While there are many uncertainties in the relative contribution and changes in the N2O production pathways, the increasing storage seems unequivocal and determines largely the decrease in N2O emissions in the future. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around −0.009 W m−2 K−1, which is comparable to the potential increase from terrestrial N2O sources. However, the assessment for a potential balance between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next-generation Earth system models.


2014 ◽  
Vol 11 (12) ◽  
pp. 16703-16742 ◽  
Author(s):  
J. Martinez-Rey ◽  
L. Bopp ◽  
M. Gehlen ◽  
A. Tagliabue ◽  
N. Gruber

Abstract. The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known on how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. We implemented two different parameterizations of N2O production, which differ primarily at low oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12% in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 Tg N yr−1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the Oxygen Minimum Zones (OMZs), i.e., in the Eastern Tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production associated primarily with denitrification. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around −0.009 W m−2 K−1, which is comparable to the potential increase from terrestrial N2O sources. However, the assesment for a compensation between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next generation of Earth System Models.


2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


2011 ◽  
Vol 11 (17) ◽  
pp. 9333-9342 ◽  
Author(s):  
M. Kaleem Abbasi ◽  
C. Müller

Abstract. Long-term field observations showed that N2O fluxes observed shortly after N application were not significantly affected by elevated CO2 in the Giessen Free Air Carbon dioxide Enrichment (FACE) study. To further investigate this unexpected result a 15N tracer study was carried out under controlled conditions where in parallel treatments either the NH4+ pool (15NH4NO3) or the NO3− pool (NH415NO3) was enriched with 15N. Fluxes of CO2, CH4, and N2O as well as the 15N enrichment of the N2O were measured. Denitrifying Enzyme Activity (DEA), total denitrification (N2 + N2O) and N2-to-N2O ratios were quantified in separate experiments. Over the 57 day incubation, N2O fluxes averaged 0.090 ng N2O-N g−1 h−1 under ambient and 0.083 ng N2O-N g−1 h−1 under elevated CO2 (not significantly different). The N2O production processes were identified by a two-source model. Results showed that N2O must have also been produced by a third source – possibly related to organic N transformation – which was stimulated by elevated CO2. Soil CO2 fluxes were approximately 20 % higher under elevated CO2 than soil from ambient but the differences were not significant. CH4 oxidation rates were on average −1.75 ng CH4-C g−1 h−1 in the elevated and −1.17 ng CH4-C g−1 h−1 in the ambient indicating that elevated CO2 increased the CH4 oxidation by 49 % compared to ambient CO2 under controlled conditions. N fertilization increased CH4 oxidation by 3-fold in both CO2 treatments. CO2 did not have any significant effect on DEA while total denitrification and N2-to-N2O ratios increased by 36 and 33 %, respectively. The results indicate that shortly after N application elevated CO2 must have stimulated both the N2O production and reduction to N2 to explain the increased N2-to-N2O ratio and at the same time explain the non-responsiveness of the N2O emissions. Thus, the observed variation of the CO2 effect on N2O emissions throughout the year is possibly governed by the dynamics of the N2O reductase activity.


2011 ◽  
Vol 8 (6) ◽  
pp. 11941-11978 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were done over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during the spring 2009 period were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grassland, meadow, and wetland. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil moisture conditions due to the absence of rain during the four previous weeks. Measured cumulated annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1, respectively) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application, confirming the importance of the climatic regime on N2O fluxes.


SOIL ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 399-412
Author(s):  
Kate M. Buckeridge ◽  
Kate A. Edwards ◽  
Kyungjin Min ◽  
Susan E. Ziegler ◽  
Sharon A. Billings

Abstract. Production and reduction of nitrous oxide (N2O) by soil denitrifiers influence atmospheric concentrations of this potent greenhouse gas. Accurate projections of the net N2O flux have three key uncertainties: (1) short- vs. long-term responses to warming, (2) interactions among soil horizons, and (3) temperature responses of different steps in the denitrification pathway. We addressed these uncertainties by sampling soil from a boreal forest climate transect encompassing a 5.2 ∘C difference in the mean annual temperature and incubating the soil horizons in isolation and together at three ecologically relevant temperatures in conditions that promote denitrification. Both short-term exposure to warmer temperatures and long-term exposure to a warmer climate increased N2O emissions from organic and mineral soils; an isotopic tracer suggested that an increase in N2O production was more important than a decline in N2O reduction. Short-term warming promoted the reduction of organic horizon-derived N2O by mineral soil when these horizons were incubated together. The abundance of nirS (a precursor gene for N2O production) was not sensitive to temperature, whereas that of nosZ clade I (a gene for N2O reduction) decreased with short-term warming in both horizons and was higher from a warmer climate. These results suggest a decoupling of gene abundance and process rates in these soils that differs across horizons and timescales. In spite of these variations, our results suggest a consistent, positive response of denitrifier-mediated net N2O efflux rates to temperature across timescales in these boreal forests. Our work also highlights the importance of understanding cross-horizon N2O fluxes for developing a predictive understanding of net N2O efflux from soils.


Author(s):  
Inderjot Chahal ◽  
Khagendra R. Baral ◽  
Kate A. Congreves ◽  
Laura L. Van Eerd ◽  
C. Wagner-Riddle

Horticultural systems, specifically vegetable production systems, are considered intensive agricultural systems as they are characterized by high nitrogen (N) fertilizer application rate, frequent tillage and irrigation operations. Accordingly, horticultural production in temperate climates is prone to N losses—mainly during post-harvest (during fall and winter) or pre-plant (spring) periods—such as N2O emissions and nitrate leaching. The risk for N losses is linked to low crop N use efficiency (NUE) combined with a narrow C:N and high N content of crop residues. Here we reviewed the studies conducted in Canada and similar climates to better understand the risk of N2O emission and potential agronomic management strategies to reduce N2O emissions from horticultural systems. Current knowledge on N2O emissions from horticultural systems indicate that increasing crop NUE, modifying the amount, type, time, and rate of N fertilizer inputs, and adopting cover crops in crop rotations are some of the effective approaches to decrease N2O emissions. However, there is uncertainty related to the efficiency of the existing N2O mitigation strategies due to the complex interactions between the factors (soil characteristics, type of plant species, climatic conditions, and soil microbial activity) responsible for N2O production from soil. Little research on N2O emissions from Canadian horticultural systems limits our ability to understand and manage the soil N2O production processes to mitigate the risk of N2O emissions. Thus, continuing to expand this line of research will help to advance the sustainability of Canadian horticultural cropping systems.


2009 ◽  
Vol 6 (3) ◽  
pp. 6111-6145 ◽  
Author(s):  
M. K. Pihlatie ◽  
R. Kiese ◽  
N. Brüggemann ◽  
K. Butterbach-Bahl ◽  
A.-J. Kieloaho ◽  
...  

Abstract. Fluxes of greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured during a two month campaign at a drained peatland forest in Finland by the eddy covariance (EC) technique (CO2 and N2O), and automatic and manual chambers (CO2, CH4 and N2O). In addition, GHG concentrations and soil parameters (mineral nitrogen, temperature, moisture content) in the peat profile were measured. The aim of the measurement campaign was to quantify the GHG fluxes before, during and after thawing of the peat soil, a time period with potentially high GHG fluxes, and to compare different flux measurement methods. The forest was a net CO2 sink during the two months and the fluxes of CO2 dominated the GHG exchange. The peat soil was a small sink of atmospheric CH4 but a small source of N2O. Both CH4 oxidation and N2O production took place in the top-soil whereas CH4 was produced in the deeper layers of the peat. During the thawing of the peat distinct peaks in CO2 and N2O emissions were observed. The CO2 peak followed tightly the increase in soil temperature, whereas the N2O peak occurred with an approx. one week delay after soil thawing. CH4 fluxes did not respond to the thawing of the peat soil. The CO2 and N2O emission peaks were not captured by the manual chambers and hence we conclude that automatic chamber measurements or EC are necessary to quantify fluxes during peak emission periods. Sub-canopy EC measurements and chamber-based fluxes of CO2 and N2O were comparable, although the fluxes of N2O measured by EC were close to the detection limit of the EC system. We conclude that if fluxes are high enough, i.e. greater than 5–10 μg N m−2 h−1, the EC method is a good alternative to measure N2O and CO2 fluxes at ecosystem scale, thereby minimizing problems with chamber enclosures and spatial representativeness of the measurements.


2019 ◽  
Author(s):  
Kate M. Buckeridge ◽  
Kate A. Edwards ◽  
Kyungjin Min ◽  
Susan E. Ziegler ◽  
Sharon A. Billings

Abstract. Production and reduction of nitrous oxide (N2O) by soil denitrifiers influences atmospheric concentrations of this potent greenhouse gas. Accurate climate projections of net N2O flux have three key uncertainties: (1) short- vs. long-term responses to warming; (2) interactions among soil horizons; and (3) temperature responses of different steps in the denitrification pathway. We addressed these uncertainties by sampling soil from a boreal forest climate transect encompassing a 5.2 °C difference in mean annual temperature, and incubating the soil horizons in isolation and together at three ecologically relevant temperatures in conditions that promote denitrification. Both short-term exposure to warmer temperatures and long-term exposure to a warmer climate increased N2O emissions from organic and mineral soils; an isotopic tracer suggested an increase in N2O production was more important than a decline in N2O reduction. Short-term warming promoted reduction of organic horizon-derived N2O by mineral soil when these horizons were incubated together. The abundance of nirS (a precursor gene for N2O production) was not sensitive to temperature, while that of nosZ clade I (a gene for N2O reduction) decreased with short-term warming in both horizons and was higher from a warmer climate. These results suggest a decoupling of gene abundance and process rates in these soils that differs across horizons and timescales. In spite of these variations, our results suggest a consistent, positive response of denitrifier-mediated, net N2O efflux rates to temperature across timescales in these boreal forests. Our work also highlights the importance of understanding cross-horizon N2O fluxes for developing a predictive understanding of net N2O efflux from soils.


Sign in / Sign up

Export Citation Format

Share Document