scholarly journals The European land and inland water CO<sub>2</sub>, CO, CH<sub>4</sub> and N<sub>2</sub>O balance between 2001 and 2005

2012 ◽  
Vol 9 (8) ◽  
pp. 3357-3380 ◽  
Author(s):  
S. Luyssaert ◽  
G. Abril ◽  
R. Andres ◽  
D. Bastviken ◽  
V. Bellassen ◽  
...  

Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294 ± 545 Tg C in CO2-eq yr−1), inventories (1299 ± 200 Tg C in CO2-eq yr−1) and inversions (1210 ± 405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205 ± 72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.

2012 ◽  
Vol 9 (2) ◽  
pp. 2005-2053 ◽  
Author(s):  
S. Luyssaert ◽  
G. Abril ◽  
R. Andres ◽  
D. Bastviken ◽  
V. Bellassen ◽  
...  

Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic emissions over the period 20007–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balance of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are confronted with (3) the atmospheric-based balance derived from inversion informed by measurements of atmospheric GHG concentrations. Good agreement between the GHG balances based on fluxes (1249 ± 545 Tg C in CO2-eq y−1), inventories (1299 ± 200 Tg C in CO2-eq y−1) and inversions (1210 ± 405 Tg C in CO2-eq y−1) increases our confidence that current European GHG balances are accurate. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land-atmosphere balances are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The dual-constraint approach confirmed that the European land surface, including inland waters and urban areas, is a net source for CO2, CO, CH4 and N2O. However, for all ecosystems except croplands, C uptake exceeds C release and us such 210 ± 70 Tg C y−1 from fossil fuel burning is removed from the atmosphere and sequestered in both terrestrial and inland aquatic ecosystems. If the C cost for ecosystem management is taken into account, the net uptake of ecosystems was estimated to decrease by 45% but still indicates substantial C-sequestration. Also, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is compensated for by emissions of GHGs. As such the European ecosystems are unlikely to contribute to mitigating the effects of climate change.


2016 ◽  
Author(s):  
Stephanie K. Jones ◽  
Carole Helfter ◽  
Margaret Anderson ◽  
Mhairi Coyle ◽  
Claire Campbell ◽  
...  

Abstract. Intensively managed grazed grasslands in temperate climates are globally important environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed, occasionally cut, and fertilized grassland in SE Scotland by measuring or modelling all relevant imports and exports to the field as well as changes in soil C and N pools over time. The N budget was dominated by import from inorganic and organic fertilisers (21.9 g N m2 yr−1) and losses from leaching (5.3 g N m2 yr−1), N2 emissions and NOx and NH3 volatilisation (6.4 g N m2 yr−1). The efficiency of N use by animal products (meat and wool) averaged 11 %. On average over nine years (2002–2010) the balance of N fluxes suggested that 7.2 ± 4.6 g N m−2 y−1 (mean ± confidence interval at p > 0.95) were stored in the soil. The largest component of the C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 155 g C m−2 y−1 over the nine years. This sink strength was offset by carbon export from the field mainly as harvest (48.9 g C m2 yr−1) and leaching (16.4 g C m2 yr−1). The other export terms, CH4 emissions from the soil, manure applications and enteric fermentation were negligible and only contributed to 0.02–4.2 % of the total C losses. Only a small fraction of C was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget resulted in a C sink strength of 163 ± 140 g C m−2 y−1. On the contrary, soil stock measurements taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0–60 cm soil layer at 4.51 ± 2.64 g N m−2 y−1 and lost C at a rate of 29.08 ± 38.19 g C m−2 y-1, respectively. Potential reasons for the discrepancy between these estimates are probably an underestimation of C and N losses, especially from leaching fluxes as well as from animal respiration. The average greenhouse gas (GHG) balance of the grassland was −366 ± 601 g CO2 eq m−2 y−1 and strongly affected by CH4 and N2O emissions. The GHG sink strength of the NEE was reduced by 54 % by CH4 and N2O emissions. Enteric fermentation from the ruminating sheep proved to be an important CH4 source, exceeding the contribution of N2O to the GHG budget in some years.


2017 ◽  
Vol 14 (8) ◽  
pp. 2069-2088 ◽  
Author(s):  
Stephanie K. Jones ◽  
Carole Helfter ◽  
Margaret Anderson ◽  
Mhairi Coyle ◽  
Claire Campbell ◽  
...  

Abstract. Intensively managed grazed grasslands in temperate climates are globally important environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed and occasionally cut and fertilised grassland in SE Scotland by measuring or modelling all relevant imports and exports to the field as well as changes in soil C and N stocks over time. The N budget was dominated by import from inorganic and organic fertilisers (21.9 g N m−2 a−1) and losses from leaching (5.3 g N m−2 a−1), N2 emissions (2.9 g N m−2 a−1), and NOx and NH3 volatilisation (3.9 g N m−2 a−1), while N2O emission was only 0.6 g N m−2 a−1. The efficiency of N use by animal products (meat and wool) averaged 9.9 % of total N input over only-grazed years (2004–2010). On average over 9 years (2002–2010), the balance of N fluxes suggested that 6.0 ± 5.9 g N m−2 a−1 (mean ± confidence interval at p > 0.95) were stored in the soil. The largest component of the C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 155 g C m−2 a−1 over the 9 years. This sink strength was offset by carbon export from the field mainly as grass offtake for silage (48.9 g C m−2 a−1) and leaching (16.4 g C m−2 a−1). The other export terms, CH4 emissions from the soil, manure applications and enteric fermentation, were negligible and only contributed to 0.02–4.2 % of the total C losses. Only a small fraction of C was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget resulted in a C sink strength of 163 ± 140 g C m−2 a−1. By contrast, soil stock measurements taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0–60 cm soil layer at 4.51 ± 2.64 g N m−2 a−1 and lost C at a rate of 29.08 ± 38.19 g C m−2 a−1. Potential reasons for the discrepancy between these estimates are probably an underestimation of C losses, especially from leaching fluxes as well as from animal respiration. The average greenhouse gas (GHG) balance of the grassland was −366 ± 601 g CO2 eq. m−2 yr−1 and was strongly affected by CH4 and N2O emissions. The GHG sink strength of the NEE was reduced by 54 % by CH4 and N2O emissions. Estimated enteric fermentation from ruminating sheep proved to be an important CH4 source, exceeding the contribution of N2O to the GHG budget in some years.


2013 ◽  
Vol 81 ◽  
pp. 311-319 ◽  
Author(s):  
Giacomo Nicolini ◽  
Simona Castaldi ◽  
Gerardo Fratini ◽  
Riccardo Valentini

2014 ◽  
Vol 11 (19) ◽  
pp. 5399-5410 ◽  
Author(s):  
M. Peichl ◽  
A. M. Arain ◽  
T. R. Moore ◽  
J. J. Brodeur ◽  
M. Khomik ◽  
...  

Abstract. This study investigated differences in the magnitude and partitioning of the carbon (C) and greenhouse gas (GHG) balances in an age sequence of four white pine (Pinus strobus L.) afforestation stands (7, 20, 35 and 70 years old as of 2009) in southern Ontario, Canada. The 4-year (2004–2008) mean annual carbon dioxide (CO2) exchanges, based on biometric and eddy covariance data, were combined with the 2-year means of static chamber measurements of methane (CH4) and nitrous oxide (N2O) fluxes (2006–2007) and dissolved organic carbon (DOC) export below 1 m soil depth (2004–2005). The total ecosystem C pool increased with age from 46 to 197 t C ha−1 across the four stands. Rates of organic matter cycling (i.e. litterfall and decomposition) were similar among the three older stands. In contrast, considerable differences related to stand age and site quality were observed in the magnitude and partitioning of individual CO2 fluxes, showing a peak in production and respiration rates in the middle-age (20-year-old) stand growing on fertile post-agricultural soil. The DOC export accounted for 10% of net ecosystem production (NEP) at the 7-year-old stand but <2% at the three older stands. The GHG balance from the combined exchanges of CO2, CH4 and N2O was 2.6, 21.6, 13.5 and 4.8 t CO2 equivalent ha−1 year−1 for the 7-, 20-, 35- and 70-year-old stands, respectively. The maximum annual contribution from the combined exchanges of CH4 and N2O to the GHG balance was 13 and 8% in the 7- and 70-year-old stands, respectively, but <1% in the two highly productive middle-age (20- and 35-year-old) stands. Averaged over the entire age sequence, the CO2 exchange was the main driver of the GHG balance in these forests. The cumulative CO2 sequestration over the 70 years was estimated at 129 t C and 297 t C ha−1 year−1 for stands growing on low- and high-productivity sites, respectively. This study highlights the importance of accounting for age and site quality effects on forest C and GHG balances. It further demonstrates a large potential for net C sequestration and climate benefits gained through afforestation of marginal agricultural and fallow lands in temperate regions.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 388-388
Author(s):  
Maria A Donnay ◽  
Jennifer J Michal ◽  
GeorgiaLee J Aksdal ◽  
Brian K Lamb ◽  
Kristen A Johnson

Abstract Management of livestock manure may recycle nutrients and decrease greenhouse gas (GHG) and ammonia (NH3) emissions. The objectives were to ascertain effects of environmental conditions and turning on methane (CH4), nitrous oxide (N2O), and NH3 emissions and if treatment with 8.5 g of dicyandiamide (DCD), a denitrification agent, altered GHG emissions. Manure and bedding were collected from feedlot pens and used to construct 3 piles (~1.9 m3 volume) each in winter (WI) and spring (SP). WI piles were turned once, and SP piles were turned twice. Methane, N2O, and NH3 emissions were collected. Methane and N2O flux measurements were collected from SP piles using a static chamber (3.7m L x 2.2m W x 0.9m H). Initial dry matter and nitrogen contents were 33.2 and 30.0% and 20.1 and 17.7 g/kg in WI and SP piles, respectively. Average ambient temperatures and wind speeds were 0.3oC and 10.7oC and 1.76 m/s and 1.97 m/s during WI and SP, respectively. Internal temperatures reached 51±3.9oC on d 4–11 and gradually decreased. Normalized CH4 averaged 2.19 mg٠s٠m-4 and N2O emissions averaged 0.84 mg٠s٠m-4, and were not different between the WI and SP piles. Turning did not affect CH4 emissions from WI piles, but were 55% greater (P &lt; 0.05) when SP piles were turned a second time. Emissions of N2O increased 51% when WI and SP piles were turned (P &lt; 0.05). Ammonia emissions were 83.5% greater from WI piles due to their higher initial concentrations of NH4+-N (2.21 vs. 1.11 g/kg; P &lt; 0.05). Turning did not influence CH4 and N2O fluxes. Addition of DCD at pile formation appears to decrease N2O emissions and fluxes 3 and 10 d later. Turning management and season impacted overall CH4, N2O, and NH3 emissions. Fine-tuning manure handling and management during different seasons may effectively reduce GHG and NH3 emissions.


2012 ◽  
Vol 12 (24) ◽  
pp. 12165-12182 ◽  
Author(s):  
Ü. Rannik ◽  
N. Altimir ◽  
I. Mammarella ◽  
J. Bäck ◽  
J. Rinne ◽  
...  

Abstract. This study scrutinizes a decade-long series of ozone deposition measurements in a boreal forest in search for the signature and relevance of the different deposition processes. The canopy-level ozone flux measurements were analysed for deposition characteristics and partitioning into stomatal and non-stomatal fractions, with the main focus on growing season day-time data. Ten years of measurements enabled the analysis of ozone deposition variation at different time-scales, including daily to inter-annual variation as well as the dependence on environmental variables and concentration of biogenic volatile organic compounds (BVOC-s). Stomatal deposition was estimated by using multi-layer canopy dispersion and optimal stomatal control modelling from simultaneous carbon dioxide and water vapour flux measurements, non-stomatal was inferred as residual. Also, utilising the big-leaf assumption stomatal conductance was inferred from water vapour fluxes for dry canopy conditions. The total ozone deposition was highest during the peak growing season (4 mm s−1) and lowest during winter dormancy (1 mm s−1). During the course of the growing season the fraction of the non-stomatal deposition of ozone was determined to vary from 26 to 44% during day time, increasing from the start of the season until the end of the growing season. By using multi-variate analysis it was determined that day-time total ozone deposition was mainly driven by photosynthetic capacity of the canopy, vapour pressure deficit (VPD), photosynthetically active radiation and monoterpene concentration. The multi-variate linear model explained the high portion of ozone deposition variance on daily average level (R2 = 0.79). The explanatory power of the multi-variate model for ozone non-stomatal deposition was much lower (R2 = 0.38). The set of common environmental variables and terpene concentrations used in multivariate analysis were able to predict the observed average seasonal variation in total and non-stomatal deposition but failed to explain the inter-annual differences, suggesting that some still unknown mechanisms might be involved in determining the inter-annual variability. Model calculation was performed to evaluate the potential sink strength of the chemical reactions of ozone with sesquiterpenes in the canopy air space, which revealed that sesquiterpenes in typical amounts at the site were unlikely to cause significant ozone loss in canopy air space. The results clearly showed the importance of several non-stomatal removal mechanisms. Unknown chemical compounds or processes correlating with monoterpene concentrations, including potentially reactions at the surfaces, contribute to non-stomatal sink term.


2011 ◽  
Vol 8 (9) ◽  
pp. 2815-2831 ◽  
Author(s):  
W. Eugster ◽  
T. DelSontro ◽  
S. Sobek

Abstract. Greenhouse gas budgets quantified via land-surface eddy covariance (EC) flux sites differ significantly from those obtained via inverse modeling. A possible reason for the discrepancy between methods may be our gap in quantitative knowledge of methane (CH4) fluxes. In this study we carried out EC flux measurements during two intensive campaigns in summer 2008 to quantify methane flux from a hydropower reservoir and link its temporal variability to environmental driving forces: water temperature and pressure changes (atmospheric and due to changes in lake level). Methane fluxes were extremely high and highly variable, but consistently showed gas efflux from the lake when the wind was approaching the EC sensors across the open water, as confirmed by floating chamber flux measurements. The average flux was 3.8 ± 0.4 μg C m−2 s−1 (mean ± SE) with a median of 1.4 μg C m−2 s−1, which is quite high even compared to tropical reservoirs. Floating chamber fluxes from four selected days confirmed such high fluxes with 7.4 ± 1.3 μg C m−2 s−1. Fluxes increased exponentially with increasing temperatures, but were decreasing exponentially with increasing atmospheric and/or lake level pressure. A multiple regression using lake surface temperatures (0.1 m depth), temperature at depth (10 m deep in front of the dam), atmospheric pressure, and lake level was able to explain 35.4% of the overall variance. This best fit included each variable averaged over a 9-h moving window, plus the respective short-term residuals thereof. We estimate that an annual average of 3% of the particulate organic matter (POM) input via the river is sufficient to sustain these large CH4 fluxes. To compensate the global warming potential associated with the CH4 effluxes from this hydropower reservoir a 1.3 to 3.7 times larger terrestrial area with net carbon dioxide uptake is needed if a European-scale compilation of grasslands, croplands and forests is taken as reference. This indicates the potential relevance of temperate reservoirs and lakes in local and regional greenhouse gas budgets.


2021 ◽  
Author(s):  
Marine Valmier ◽  
Matthew Saunders ◽  
Gary Lanigan

&lt;p&gt;Grassland-based agriculture in Ireland contributes over one third of national greenhouse gas (GHG) emissions, and the LULUCF sector is a net GHG source primarily due to the ongoing drainage of peat soils. Rewetting of peat-based organic soils is now recognised as an attractive climate mitigation strategy, but reducing emissions and restoring the carbon sequestration potential is challenging, and is not always feasible notably due to agricultural demands. Nonetheless, reducing carbon losses from drained organic soils has been identified as a key action for Ireland to reach its climate targets, and carbon storage associated with improved grassland management practices can provide a suitable strategy to offset GHG emissions without compromising productivity. However, research is still needed to assess the best practices and management options for optimum environmental and production outcomes. While grasslands have been widely studied internationally, data on organic soils under this land use are still scarce. In Ireland, despite their spatial extent and relevance to the national emission inventories and mitigation strategies, only two studies on GHG emissions from grasslands on peat soils have been published.&lt;/p&gt;&lt;p&gt;Here we present results from a grassland on a drained organic soil that is extensively managed for silage production in the Irish midlands. Continuous monitoring of Net Ecosystem Exchange (NEE) of carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;) using eddy covariance techniques, and weekly static chamber measurements to assess soil derived emissions of methane (CH&lt;sub&gt;4&lt;/sub&gt;) and nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O) started in 2020. The seasonal CO&lt;sub&gt;2&lt;/sub&gt; fluxes observed were greatly dependent on weather conditions and management events. The grassland shifted from a carbon source at the beginning of the year to a sink during the growing season, with carbon uptakes in April and May ranging from 15 to 40 &amp;#181;mol CO&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt; and releases in the order of 5 &amp;#181;mol CO&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt;. Following the first harvest event in early June, approximately 2.5 t C ha&lt;sup&gt;-1&lt;/sup&gt; was exported, and the sink capacity took around one month to recover, with an average NEE of 10 &amp;#181;mol CO&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt; during that period. Carbon uptake then reached a maximum of 25 &amp;#181;mol CO&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt; in August. After the second cut in mid-September, which corresponded to an export of 2.25 t.ha&lt;sup&gt;-1&lt;/sup&gt; of carbon, the grassland acted once again as a strong carbon source, losing almost 30 g C m&lt;sup&gt;-2&lt;/sup&gt; in a month, before stabilising and behaving as an overall small source during the winter period.&lt;/p&gt;&lt;p&gt;In summary, this grassland demonstrated high rates of carbon assimilation and productivity that translate in a strong carbon sink capacity highly dependent on the management. The biomass harvest is a major component of the annual budget that has the potential to shift the system to a net carbon source. Moreover, while initial measurements of CH&lt;sub&gt;4&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O fluxes appeared to be negligible, some management events were not assessed due to national COVID 19 restrictions on movement, which might have impacted the sink strength of the site studied.&lt;/p&gt;


2009 ◽  
Vol 6 (8) ◽  
pp. 1371-1388 ◽  
Author(s):  
E. Personne ◽  
B. Loubet ◽  
B. Herrmann ◽  
M. Mattsson ◽  
J. K. Schjoerring ◽  
...  

Abstract. A new biophysical model SURFATM-NH3, simulating the ammonia (NH3) exchange between terrestrial ecosystems and the atmosphere is presented. SURFATM-NH3 consists of two coupled models: (i) an energy budget model and (ii) a pollutant exchange model, which distinguish the soil and plant exchange processes. The model describes the exchanges in terms of adsorption to leaf cuticles and bi-directional transport through leaf stomata and soil. The results of the model are compared with the flux measurements over grassland during the GRAMINAE Integrated Experiment at Braunschweig, Germany. The dataset of GRAMINAE allows the model to be tested in various meteorological and agronomic conditions: prior to cutting, after cutting and then after the application of mineral fertilizer. The whole comparison shows close agreement between model and measurements for energy budget and ammonia fluxes. The major controls on the ground and plant emission potential are the physicochemical parameters for liquid-gas exchanges which are integrated in the compensation points for live leaves, litter and the soil surface. Modelled fluxes are highly sensitive to soil and plant surface temperatures, highlighting the importance of accurate estimates of these terms. The model suggests that the net flux depends not only on the foliar (stomatal) compensation point but also that of leaf litter. SURFATM-NH3 represents a comprehensive approach to studying pollutant exchanges and its link with plant and soil functioning. It also provides a simplified generalised approach (SVAT model) applicable for atmospheric transport models.


Sign in / Sign up

Export Citation Format

Share Document