scholarly journals Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

2015 ◽  
Vol 12 (13) ◽  
pp. 10939-10983 ◽  
Author(s):  
K. M. G. Mostofa ◽  
C.-Q. Liu ◽  
W. D. Zhai ◽  
M. Minella ◽  
D. Vione ◽  
...  

Abstract. Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3−, and CO32−) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different time scales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

2016 ◽  
Vol 13 (6) ◽  
pp. 1767-1786 ◽  
Author(s):  
Khan M. G. Mostofa ◽  
Cong-Qiang Liu ◽  
WeiDong Zhai ◽  
Marco Minella ◽  
Davide Vione ◽  
...  

Abstract. Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3−, and CO32−) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Han Zhang ◽  
Kuo Wang

AbstractSince preindustrial times, as atmospheric CO2 concentration increases, the ocean continuously absorbs anthropogenic CO2, reducing seawater pH and $$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$[CO32−], which is termed ocean acidification. We perform Earth system model simulations to assess CO2-induced acidification for ocean in the East China, one of the most vulnerable areas to ocean acidification. By year 2017, ocean surface pH in the East China drops from the preindustrial level of 8.20 to 8.06, corresponding to a 35% rise in [H+], and reduction rate of pH becomes faster in the last two decades. Changes in surface seawater acidity largely result from CO2-induced changes in surface dissolved inorganic carbon (DIC), alkalinity (ALK), salinity and temperature, among which DIC plays the most important role. By year 2300, simulated reduction in sea surface $$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$[CO32−] is 13% under RCP2.6, contrasted to 72% under RCP8.5. Furthermore, simulated results show that CO2-induced warming acts to mitigate reductions in $$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$[CO32−], but the individual effect of oceanic CO2 uptake is much greater than the effect of CO2-induced warming on ocean acidification. Our study quantifies ocean acidification induced by anthropogenic CO2, and indicates the potentially important role of accelerated CO2 emissions in projections of future changes in biogeochemistry and ecosystem of ocean in the East China.


2017 ◽  
Vol 284 (1868) ◽  
pp. 20172117 ◽  
Author(s):  
Verena Schoepf ◽  
Christopher P. Jury ◽  
Robert J. Toonen ◽  
Malcolm T. McCulloch

Ocean acidification (OA) is a pressing threat to reef-building corals, but it remains poorly understood how coral calcification is inhibited by OA and whether corals could acclimatize and/or adapt to OA. Using a novel geochemical approach, we reconstructed the carbonate chemistry of the calcifying fluid in two coral species using both a pH and dissolved inorganic carbon (DIC) proxy (δ 11 B and B/Ca, respectively). To address the potential for adaptive responses, both species were collected from two sites spanning a natural gradient in seawater pH and temperature, and then subjected to three pH T levels (8.04, 7.88, 7.71) crossed by two temperatures (control, +1.5°C) for 14 weeks. Corals from the site with naturally lower seawater pH calcified faster and maintained growth better under simulated OA than corals from the higher-pH site. This ability was consistently linked to higher pH yet lower DIC values in the calcifying fluid, suggesting that these differences are the result of long-term acclimatization and/or local adaptation to naturally lower seawater pH. Nevertheless, all corals elevated both pH and DIC significantly over seawater values, even under OA. This implies that high pH upregulation combined with moderate levels of DIC upregulation promote resistance and adaptive responses of coral calcification to OA.


2015 ◽  
Vol 12 (20) ◽  
pp. 6251-6258 ◽  
Author(s):  
K. Watanabe ◽  
T. Kuwae

Abstract. Submerged aquatic vegetation takes up water-column dissolved inorganic carbon (DIC) as a carbon source across its thin cuticle layer. It is expected that marine macrophytes also use atmospheric CO2 when exposed to air during low tide, although assimilation of atmospheric CO2 has never been quantitatively evaluated. Using the radiocarbon isotopic signatures (Δ14C) of the seagrass Zostera marina, DIC and particulate organic carbon (POC), we show quantitatively that Z. marina takes up and assimilates atmospheric modern CO2 in a shallow coastal ecosystem. The Δ14C values of the seagrass (−40 to −10 ‰) were significantly higher than those of aquatic DIC (−46 to −18 ‰), indicating that the seagrass uses a 14C-rich carbon source (atmospheric CO2, +17 ‰). A carbon-source mixing model indicated that the seagrass assimilated 0–40 % (mean, 17 %) of its inorganic carbon as atmospheric CO2. CO2 exchange between the air and the seagrass might be enhanced by the presence of a very thin film of water over the air-exposed leaves during low tide. Our radiocarbon isotope analysis, showing assimilation of atmospheric modern CO2 as an inorganic carbon source, improves our understanding of the role of seagrass meadows in coastal carbon dynamics.


2020 ◽  
Vol 71 (3) ◽  
pp. 281 ◽  
Author(s):  
J. M. Vance ◽  
K. I. Currie ◽  
C. S. Law ◽  
J. Murdoch ◽  
J. Zeldis

A national observing network has been operating over the past 4 years to inform the scientific and economic challenges of ocean acidification (OA) facing New Zealand. The New Zealand Ocean Acidification Observing Network (NZOA-ON) consists of 12 sites across varied coastal ecosystems. These ecosystems range from oligotrophic ocean-dominated systems to eutrophic river-dominated systems, with sites that are pristine or affected by agriculture and urbanisation. Fortnightly measurements of total alkalinity and dissolved inorganic carbon provide the baseline of carbonate chemistry in these varied ecosystems and will facilitate detection of future changes, as well as providing a present-day baseline. The National Institute of Water and Atmospheric Research and the University of Otago have developed a ‘grass-roots’ sampling program, providing training and equipment that enable sampling partners to collect field samples for analyses at a central laboratory. NZOA-ON leverages existing infrastructure and partnerships to maximise data captured for understanding the drivers of chemical changes associated with OA and ecological responses. NZOA-ON coordinates with and contributes to global initiatives to understand and mitigate the broader impacts of OA. A description of NZOA-ON is presented with preliminary analyses and comparison of data from different sites after the first 4 years of the network.


2020 ◽  
Vol 71 (3) ◽  
pp. 263 ◽  
Author(s):  
Catriona L. Hurd ◽  
John Beardall ◽  
Steeve Comeau ◽  
Christopher E. Cornwall ◽  
Jonathan N Havenhand ◽  
...  

‘Multiple drivers’ (also termed ‘multiple stressors’) is the term used to describe the cumulative effects of multiple environmental factors on organisms or ecosystems. Here, we consider ocean acidification as a multiple driver because many inorganic carbon parameters are changing simultaneously, including total dissolved inorganic carbon, CO2, HCO3–, CO32–, H+ and CaCO3 saturation state. With the rapid expansion of ocean acidification research has come a greater understanding of the complexity and intricacies of how these simultaneous changes to the seawater carbonate system are affecting marine life. We start by clarifying key terms used by chemists and biologists to describe the changing seawater inorganic carbon system. Then, using key groups of non-calcifying (fish, seaweeds, diatoms) and calcifying (coralline algae, coccolithophores, corals, molluscs) organisms, we consider how various physiological processes are affected by different components of the carbonate system.


2019 ◽  
Vol 11 (9) ◽  
pp. 2677 ◽  
Author(s):  
Miho Ishizu ◽  
Yasumasa Miyazawa ◽  
Tomohiko Tsunoda ◽  
Xinyu Guo

We developed a biogeochemical and carbon model (JCOPE_EC) coupled with an operational ocean model for the North Western Pacific. JCOPE_EC represents ocean acidification indices on the background of the risks due to ocean acidification and our model experiences. It is an off-line tracer model driven by a high-resolution regional ocean general circulation model (JCOPE2M). The results showed that the model adequately reproduced the general patterns in the observed data, including the seasonal variability of chlorophyll-a, dissolved inorganic nitrogen/phosphorus, dissolved inorganic carbon, and total alkalinity. We provide an overview of this system and the results of the model validation based on the available observed data. Sensitivity analysis using fixed values for temperature, salinity, dissolved inorganic carbon and total alkalinity helped us identify which variables contributed most to seasonal variations in the ocean acidification indices, pH and Ωarg. The seasonal variation in the pHinsitu was governed mainly by balances of the change in temperature and dissolved inorganic carbon. The seasonal increase in Ωarg from winter to summer was governed mainly by dissolved inorganic carbon levels.


Sign in / Sign up

Export Citation Format

Share Document