scholarly journals New insights of <i>p</i>CO<sub>2</sub> variability in the tropical eastern Pacific Ocean using SMOS SSS

2015 ◽  
Vol 12 (6) ◽  
pp. 4595-4625 ◽  
Author(s):  
C. W. Brown ◽  
J. Boutin ◽  
L. Merlivat

Abstract. Complex oceanic circulation and air–sea interaction make the eastern tropical Pacific Ocean (ETPO) a highly variable source of CO2 to the atmosphere. Although the scientific community have amassed 70 000 surface partial-pressure of carbon dioxide (pCO2) datapoints within the ETPO region over the past 25 years, the spatial and temporal resolution of this dataset is insufficient to fully quantify the seasonal to inter-annual variability of the region, a region where pCO2 has been observed to fluctuate by >300 μatm. Upwelling and rainfall events dominate the surface physical and chemical characteristics of the ETPO, with both yielding unique signatures in sea surface temperature and salinity. Thus, we explore the potential of using a statistical description of pCO2 within sea-surface salinity-temperature space. These SSS/SST relationships are based on in-situ SOCAT data collected within the ETPO. This statistical description is then applied to high resolution (0.25°) SMOS sea surface salinity and OSTIA sea surface temperature in order to compute regional pCO2. As a result, we are able to resolve pCO2 at sufficiently high resolution to elucidate the influence various physical processes have on the pCO2 of the surface ETPO. Normalised (to 2014) oceanic pCO2 between July 2010 and June 2014 within the entire ETPO was 41 μatm supersaturated with respect to 2014 atmospheric partial pressures. Values of pCO2 within the ETPO were found to be broadly split between southeast and a northwest regions. The north west, central and South Equatorial Current regions were supersaturated, with wintertime wind jet driven upwelling found to be the first order control on pCO2 values. This contrasts with the southeastern/Gulf of Panama region, where heavy rainfall combined with rapid stratification of the upper water-column act to dilute dissolved inorganic carbon, and yield pCO2 values undersaturated with respect to atmospheric partial pressures of CO2.

2015 ◽  
Vol 12 (23) ◽  
pp. 7315-7329 ◽  
Author(s):  
C. Walker Brown ◽  
J. Boutin ◽  
L. Merlivat

Abstract. Complex oceanic circulation and air–sea interaction make the eastern tropical Pacific Ocean (ETPO) a highly variable source of CO2 to the atmosphere. Although the scientific community have amassed 70 000 surface fugacities of carbon dioxide (fCO2) data points within the ETPO region over the past 25 years, the spatial and temporal resolution of this data set is insufficient to fully quantify the seasonal to interannual variability of the region, a region where fCO2 has been observed to fluctuate by > 300 μatm. Upwelling and rainfall events dominate the surface physical and chemical characteristics of the ETPO, with both yielding unique signatures in sea surface temperature and salinity. Thus, we explore the potential of using a statistical description of fCO2 within sea-surface salinity–temperature space. These SSS/SST relationships are based on in situ surface ocean CO2 atlas (SOCAT) data collected within the ETPO. This statistical description is then applied to high-resolution (0.25°) Soil Moisture and Ocean Salinity (SMOS) sea surface salinity (SSS) and Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) sea surface temperature (SST) in order to compute regional fCO2. As a result, we are able to resolve fCO2 at sufficiently high resolution to elucidate the influence that various physical processes have on the fCO2 of the surface ETPO. Normalised (to 2014) oceanic fCO2 between July 2010 and June 2014 within the entire ETPO was 39 (±10.7) μatm supersaturated with respect to 2014 atmospheric partial pressures, and featured a CO2 outgassing of 1.51 (±0.41) mmol m−2 d−1. Values of fCO2 within the ETPO were found to be broadly split between the Gulf of Panama region and the rest of the tropical eastern Pacific Ocean. The northwest, central and offshore regions were supersaturated, with wintertime wind-jet-driven upwelling found to constitute the first-order control on fCO2 values. This contrasts with the southeastern/Gulf of Panama region, where heavy rainfall combined with rapid stratification of the upper water column act to dilute dissolved inorganic carbon, and yield fCO2 values undersaturated with respect to atmospheric fugacities of CO2.


2020 ◽  
Author(s):  
Dong-Jin Kang ◽  
Sang-Hwa Choi ◽  
Daeyeon Kim ◽  
Gyeong-Mok Lee

&lt;p&gt;Surface seawater carbon dioxide was observed from 3 &amp;#176;S to 27 &amp;#176;S along 67 &amp;#176;E of the Indian Ocean in April 2018 and 2019. Partial pressure of CO&lt;sub&gt;2&lt;/sub&gt;(pCO&lt;sub&gt;2&lt;/sub&gt;) in the surface seawater and the atmosphere were observed every two minutes using an underway CO2 measurement system (General Oceanics Model 8050) installed on R/V Isabu. Surface water temperature and salinity were measured as well. The pCO&lt;sub&gt;2&lt;/sub&gt; was measured using Li-7000 NDIR. Standard gases were measured every 8 hours in five classes with concentrations of 0 &amp;#181;atm, 202 &amp;#181;atm, 350 &amp;#181;atm, 447 &amp;#181;atm, and 359.87 &amp;#181;atm. The fCO&lt;sub&gt;2&lt;/sub&gt; of atmosphere remained nearly constant at 387 &amp;#177; 2 &amp;#181;atm, but the surface seawater fCO&lt;sub&gt;2&lt;/sub&gt; peaked at about 3 &amp;#176;S and tended to decrease toward the north and south. The distribution of fCO&lt;sub&gt;2&lt;/sub&gt; in surface seawater according to latitude tends to be very similar to that of sea surface temperature. In order to investigate the factors that control the distribution of fCO&lt;sub&gt;2&lt;/sub&gt; in surface seawater, we analyzed the sea surface temperature, sea surface salinity, and other factors. The effects of salinity are insignificant, and the surface fCO&lt;sub&gt;2&lt;/sub&gt; distribution is mainly controlled by sea surface temperature and other factors that can be represented mainly by biological activity and mixing.&lt;/p&gt;


2021 ◽  
Author(s):  
Jacqueline Boutin ◽  
Jean-Luc Vergely ◽  
Emmanuel Dinnat ◽  
Philippe Waldteufel ◽  
Francesco D'Amico ◽  
...  

&lt;p&gt;We derived a new parametrisation for the dielectric constant of the ocean (Boutin et al. 2020). Earlier studies have pointed out systematic differences between Sea Surface Salinity retrieved from L-band radiometric measurements and measured in situ, that depend on Sea Surface Temperature (SST). We investigate how to cope with these differences given existing physically based radiative transfer models. In order to study differences coming from seawater dielectric constant parametrization, we consider the model of Somaraju and Trumpf (2006) (ST) which is built on sound physical bases and close to a single relaxation term Debye equation. While ST model uses fewer empirically adjusted parameters than other dielectric constant models currently used in salinity retrievals, ST dielectric constants are found close to those obtained using the Meissner and Wentz (2012) (MW) model. The ST parametrization is then slightly modified in order to achieve a better fit with seawater dielectric constant inferred from SMOS data. Upgraded dielectric constant model is intermediate between KS and MW models. Systematic differences between SMOS and in situ salinity are reduced to less than +/-0.2 above 0&amp;#176;C and within +/-0.05 between 7 and 28&amp;#176;C. Aquarius salinity becomes closer to in situ salinity, and within +/-0.1. The order of magnitude of remaining differences is very similar to the one achieved with the Aquarius version 5 empirical adjustment of wind model SST dependency. The upgraded parametrization is recommended for use in processing the SMOS data.&amp;#160;&lt;/p&gt;&lt;p&gt;The rationale for this new parametrisation, results obtained with this new parametrisation in recent SMOS reprocessings and comparisons with other parametrisations will be discussed.&lt;/p&gt;&lt;p&gt;Reference:&lt;/p&gt;&lt;p&gt;Boutin, J.,et al. (2020), Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements, IEEE TGRSS, doi:10.1109/tgrs.2020.3030488.&lt;/p&gt;


2020 ◽  
Vol 12 (11) ◽  
pp. 1839 ◽  
Author(s):  
Jorge Vazquez-Cuervo ◽  
Jose Gomez-Valdes ◽  
Marouan Bouali

Validation of satellite-based retrieval of ocean parameters like Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) is commonly done via statistical comparison with in situ measurements. Because in situ observations derived from coastal/tropical moored buoys and Argo floats are only representatives of one specific geographical point, they cannot be used to measure spatial gradients of ocean parameters (i.e., two-dimensional vectors). In this study, we exploit the high temporal sampling of the unmanned surface vehicle (USV) Saildrone (i.e., one measurement per minute) and describe a methodology to compare the magnitude of SST and SSS gradients derived from satellite-based products with those captured by Saildrone. Using two Saildrone campaigns conducted in the California/Baja region in 2018 and in the North Atlantic Gulf Stream in 2019, we compare the magnitude of gradients derived from six different GHRSST Level 4 SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and two SSS (JPLSMAP, RSS40km) datasets. While results indicate strong consistency between Saildrone- and satellite-based observations of SST and SSS, this is not the case for derived gradients with correlations lower than 0.4 for SST and 0.1 for SSS products.


2019 ◽  
Vol 11 (17) ◽  
pp. 1964 ◽  
Author(s):  
Jorge Vazquez-Cuervo ◽  
Jose Gomez-Valdes ◽  
Marouan Bouali ◽  
Luis Miranda ◽  
Tom Van der Stocken ◽  
...  

Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the unmanned surface vehicle (USV)—called Saildrone—measurements from the 60 day 2018 Baja California campaign. More specifically, biases and root mean square differences (RMSDs) were calculated between USV-derived SST and SSS values, and six satellite-derived SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and three SSS (JPLSMAP, RSS40, RSS70) products. Biases between the USV SST and OSTIA/CMC/DMI were approximately zero, while MUR showed a bias of 0.3 °C. The OSTIA showed the smallest RMSD of 0.39 °C, while DMI had the largest RMSD of 0.5 °C. An RMSD of 0.4 °C between Saildrone SST and the satellite-derived products could be explained by the diurnal and sub-daily variability in USV SST, which currently cannot be resolved by remote sensing measurements. SSS showed fresh biases of 0.1 PSU for JPLSMAP and 0.2 PSU and 0.3 PSU for RMSS40 and RSS70 respectively. SST and SSS showed peaks in coherence at 100 km, most likely associated with the variability of the California Current System.


2015 ◽  
Vol 11 (4) ◽  
pp. 653-668 ◽  
Author(s):  
E. O. Walliser ◽  
B. R. Schöne ◽  
T. Tütken ◽  
J. Zirkel ◽  
K. I. Grimm ◽  
...  

Abstract. Current global warming is likely to result in a unipolar glaciated world with unpredictable repercussions on atmospheric and oceanic circulation patterns. These changes are expected to affect seasonal extremes and the year-to-year variability of seasonality. To better constrain the mode and tempo of the anticipated changes, climatologists require ultra-high-resolution proxy data of time intervals in the past, e.g., the Oligocene, during which boundary conditions were similar to those predicted for the near future. In the present paper, we assess whether such information can be obtained from shells of the long-lived bivalve mollusk Glycymeris planicostalis from the late Rupelian of the Mainz Basin, Germany. Our results indicate that the studied shells are pristinely preserved and provide an excellent archive for reconstructing changes of sea surface temperature on seasonal to interannual timescales. Shells of G. planicostalis grew uninterruptedly during winter and summer and therefore recorded the full seasonal temperature amplitude that prevailed in the Mainz Basin ~ 30 Ma. Absolute sea surface temperature data were reconstructed from δ18Oshell values assuming a δ18Owater signature that was extrapolated from coeval sirenian tooth enamel. Reconstructed values range between 12.3 and 22.0 °C and agree well with previous estimates based on planktonic foraminifera and shark teeth. However, temperatures during seasonal extremes vary greatly on interannual timescales. Mathematically re-sampled (i.e., corrected for uneven number of samples per annual increment) winter and summer temperatures averaged over 40 annual increments of three specimens equal 13.6 ± 0.8 and 17.3 ± 1.2 °C, respectively. Such high-resolution paleoclimate information can be highly relevant for numerical climate studies aiming to predict possible future climates in a unipolar glaciated or, ultimately, polar-ice-free world.


2019 ◽  
Vol 11 (7) ◽  
pp. 750 ◽  
Author(s):  
Emmanuel Dinnat ◽  
David Le Vine ◽  
Jacqueline Boutin ◽  
Thomas Meissner ◽  
Gary Lagerloef

Since 2009, three low frequency microwave sensors have been launched into space with the capability of global monitoring of sea surface salinity (SSS). The European Space Agency’s (ESA’s) Microwave Imaging Radiometer using Aperture Synthesis (MIRAS), onboard the Soil Moisture and Ocean Salinity mission (SMOS), and National Aeronautics and Space Administration’s (NASA’s) Aquarius and Soil Moisture Active Passive mission (SMAP) use L-band radiometry to measure SSS. There are notable differences in the instrumental approaches, as well as in the retrieval algorithms. We compare the salinity retrieved from these three spaceborne sensors to in situ observations from the Argo network of drifting floats, and we analyze some possible causes for the differences. We present comparisons of the long-term global spatial distribution, the temporal variability for a set of regions of interest and statistical distributions. We analyze some of the possible causes for the differences between the various satellite SSS products by reprocessing the retrievals from Aquarius brightness temperatures changing the model for the sea water dielectric constant and the ancillary product for the sea surface temperature. We quantify the impact of these changes on the differences in SSS between Aquarius and SMOS. We also identify the impact of the corrections for atmospheric effects recently modified in the Aquarius SSS retrievals. All three satellites exhibit SSS errors with a strong dependence on sea surface temperature, but this dependence varies significantly with the sensor. We show that these differences are first and foremost due to the dielectric constant model, then to atmospheric corrections and to a lesser extent to the ancillary product of the sea surface temperature.


2021 ◽  
pp. 1-50
Author(s):  
Cynthia Garcia-Eidell ◽  
Josefino C. Comiso ◽  
Max Berkelhammer ◽  
Larry Stock

AbstractSatellite data can now provide a coherent picture of sea surface salinity (SSS), chlorophyll-α concentration (Chl?), sea surface temperature (SST), and sea ice cover across the Southern Ocean. The availability of these data at the basin scale enables novel insight into the physical and biological processes in an area that has historically been difficult to gather in situ data from. The analysis shows large regional and interannual variability of these parameters but also strong coherence across the Southern Ocean. The covariability of the parameters near the marginal ice zone shows a generally negative relationship between SSS and Chl??(r = -0.87). This may in part be attributed to the large seasonality of the variables, but analysis of data within the spring period (from November to December) shows similarly high correlation (r =-0.81). This is the first time that a large-scale robust connection between low salinity and high phytoplankton concentration during ice melt period has been quantified. Chlorophyll-α concentration is also well correlated with SST (r = 0.79) providing a potential indicator of the strength of the temperature limitation on primary productivity in the region. The observed correlation also varied regionally due to differences in ice melt patterns during spring and summer. Overall, this study provides new insights into the physical characteristics of the Southern Ocean as observed from space. In a continually warming and freshening Southern Ocean, the relationships observed here provide key data source for testing ocean biogeochemical models and assessing the effect of sea ice-ocean processes on primary production.


Sign in / Sign up

Export Citation Format

Share Document