scholarly journals Microbial nitrogen cycling on the Greenland Ice Sheet

2012 ◽  
Vol 9 (7) ◽  
pp. 2431-2442 ◽  
Author(s):  
J. Telling ◽  
M. Stibal ◽  
A. M. Anesio ◽  
M. Tranter ◽  
I. Nias ◽  
...  

Abstract. Nitrogen inputs and microbial nitrogen cycling were investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) during the main ablation season in summer 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes on Leverett Glacier, within 7.5 km of the ice sheet margin, suggested microbial uptake and ammonification respectively. Positive in situ acetylene assays indicated nitrogen fixation both in a debris-rich 100 m marginal zone and up to 5.7 km upslope on Leverett Glacier (with rates up to 16.3 μmoles C2H4 m−2 day−1). No positive acetylene assays were detected > 5.7 km into the ablation zone of the ice sheet. Potential nitrogen fixation only occurred when concentrations of dissolved and sediment-bound inorganic nitrogen were undetectable. Estimates of nitrogen fluxes onto the transect suggest that nitrogen fixation is likely of minor importance to the overall nitrogen budget of Leverett Glacier and of negligible importance to the nitrogen budget on the main ice sheet itself. Nitrogen fixation is however potentially important as a source of nitrogen to microbial communities in the debris-rich marginal zone close to the terminus of the glacier, where nitrogen fixation may aid the colonization of subglacial and moraine-derived debris.

2011 ◽  
Vol 8 (5) ◽  
pp. 10423-10457 ◽  
Author(s):  
J. Telling ◽  
M. Stibal ◽  
A. M. Anesio ◽  
M. Tranter ◽  
I. Nias ◽  
...  

Abstract. Microbial nitrogen cycling was investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) in early August 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes within 7.5 km of the ice sheet margin suggested microbial uptake and ammonification respectively. Nitrogen fixation (<4.2 μmoles C2H4 m−2 day−1 to 16.3 μmoles C2H4 m−2 day−1) was active in some cryoconite holes at sites up to 5.7 km from the ice sheet margin, with nitrogen fixation inversely correlated to concentrations of inorganic nitrogen. There may be the potential for the zone of nitrogen fixation to progressively extend further into the interior of the GrIS as the melt season progresses as reserves of available nitrogen are depleted. Estimated annual inputs of nitrogen from nitrogen fixation along the transect were at least two orders of magnitude lower than inputs from precipitation, with the exception of a 100 m long marginal debris-rich zone where nitrogen fixation could potentially equal or exceed that of precipitation. The average estimated contribution of nitrogen fixation to the nitrogen demand of net microbial growth at sites along the transect ranged from 0% to 17.5%.


2019 ◽  
Vol 16 (16) ◽  
pp. 3283-3296 ◽  
Author(s):  
Alexandra T. Holland ◽  
Christopher J. Williamson ◽  
Fotis Sgouridis ◽  
Andrew J. Tedstone ◽  
Jenine McCutcheon ◽  
...  

Abstract. Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93 % of the total dissolved nitrogen and 67 % of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0 µM for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14 µM for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05 µM for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12 µM for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 µM, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07 µM for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 µM, medium: 173 µM and high: 242 µM) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 µM, respectively). We speculate that the architecture of the weathering crust, which impacts on water flow paths and storage in the melting surface ice and/or the production of extracellular polymeric substances (EPS), containing both N and P in conjunction with C, is responsible for the temporary retention of DON and DOP in the melting surface ice. The unusual presence of measurable DIP and DIN, principally as NH4+, in the melting surface ice environments suggests that factors other than macronutrient limitation are controlling the extent and magnitude of the glacier algae.


2016 ◽  
Author(s):  
J. L. Wadham ◽  
J. Hawkings ◽  
J. Telling ◽  
D. Chandler ◽  
J. Alcock ◽  
...  

Abstract. Fjord and continental shelf environments in the Polar Regions are host to some of the planet’s most productive ecosystems, and support economically important fisheries. Their productivity, however, is often critically dependent upon nutrient supply from up-stream terrestrial environments delivered via river systems. One of the most extensive glacially-fed coastal ecosystems is that bordering the Greenland Ice Sheet. The future primary productivity of this marine ecosystem, however, is uncertain. A potential increase in primary productivity driven by reduced sea ice extent and associated increased light levels may be curtailed by insufficient nutrient supply, and specifically nitrogen. Research on small valley glaciers indicates that glaciers are important sources of nitrogen to downstream environments. However, no data exists from ice sheet systems such as Greenland. Time series of nitrogen concentrations in runoff are documented from a large Greenland glacier, demonstrating seasonally elevated fluxes to the ocean. Fluxes are highest in mid-summer, when nitrogen limitation is commonly reported in coastal waters. It is estimated that approximately half of the glacially-exported nitrogen is sourced from microbial activity within glacial sediments at the surface and bed of the ice sheet, doubling nitrogen fluxes in runoff. Summer dissolved inorganic nitrogen fluxes from the Greenland Ice Sheet (30–40 Gg) are a similar order of magnitude to those from a large Arctic river (40 Gg, Holmes et al., 2012). Nitrogen yields from the ice sheet (100–160 kg TDN km−2 a−1), however, are approximately double those from Arctic riverine catchments. We assert that this ice sheet nitrogen subsidy to Arctic coastal ecosystems may be important for understanding coastal biodiversity, productivity and fisheries, and should be considered in future biogeochemical modelling studies of coastal marine productivity in the Arctic regions.


2016 ◽  
Vol 12 (6) ◽  
pp. 1313-1338 ◽  
Author(s):  
Madlene Pfeiffer ◽  
Gerrit Lohmann

Abstract. During the Last Interglacial (LIG, ∼130–115 kiloyears (kyr) before present (BP)), the northern high latitudes were characterized by higher temperatures than those of the late Holocene and a lower Greenland Ice Sheet (GIS). However, the impact of a reduced GIS on the global climate has not yet been well constrained. In this study, we quantify the contribution of the GIS to LIG warmth by performing various sensitivity studies based on equilibrium simulations, employing the Community Earth System Models (COSMOS), with a focus on height and extent of the GIS. We present the first study on the effects of a reduction in the GIS on the surface temperature (TS) on a global scale and separate the contribution of astronomical forcing and changes in GIS to LIG warmth. The strong Northern Hemisphere summer warming of approximately 2 °C (with respect to pre-industrial) is mainly caused by increased summer insolation. Reducing the height by  ∼ 1300 m and the extent of the GIS does not have a strong influence during summer, leading to an additional global warming of only +0.24 °C compared to the purely insolation-driven LIG. The effect of a reduction in the GIS is, however, strongest during local winter, with up to +5 °C regional warming and with an increase in global average temperature of +0.48 °C. In order to evaluate the performance of our LIG simulations, we additionally compare the simulated TS anomalies with marine and terrestrial proxy-based LIG temperature anomalies derived from three different proxy data compilations. Our model results are in good agreement with proxy records with respect to the warming pattern but underestimate the magnitude of temperature change when compared to reconstructions, suggesting a potential misinterpretation of the proxy records or deficits in our model. However, we are able to partly reduce the mismatch between model and data by additionally taking into account the potential seasonal bias of the proxy record and/or the uncertainties in the dating of the proxy records for the LIG thermal maximum. The seasonal bias and the uncertainty of the timing are estimated from new transient model simulations covering the whole LIG. The model–data comparison improves for proxies that represent annual mean temperatures when the GIS is reduced and when we take the local thermal maximum during the LIG (130–120 kyr BP) into account. For proxy data that represent summer temperatures, changes in the GIS are of minor importance for sea surface temperatures. However, the annual mean and summer temperature change over Greenland in the reduced GIS simulations seems to be overestimated as compared to the local ice core data, which could be related to the interpretation of the recorder system and/or the assumptions of GIS reduction. Thus, the question regarding the real size of the GIS during the LIG has yet to be answered.


2016 ◽  
Vol 13 (22) ◽  
pp. 6339-6352 ◽  
Author(s):  
Jemma Louise Wadham ◽  
Jonathan Hawkings ◽  
Jon Telling ◽  
Dave Chandler ◽  
Jon Alcock ◽  
...  

Abstract. Fjord and continental shelf environments in the polar regions are host to some of the planet's most productive ecosystems and support economically important fisheries. Their productivity, however, is often critically dependent upon nutrient supply from upstream terrestrial environments delivered via river systems. In glacially fed coastal ecosystems, riverine nutrients are largely sourced from melting snow and ice. The largest and most extensive glacially fed coastal ecosystem in the Arctic is that bordering the Greenland Ice Sheet. The future primary productivity of this ecosystem, however, is uncertain. A potential increase in primary productivity driven by reduced sea ice extent and associated increased light levels may be curtailed by insufficient nutrient supply, and specifically nitrogen. Research on small valley glaciers indicates that glaciers are important sources of nitrogen to downstream environments. However, no data exist from ice sheet systems such as Greenland. Time series of nitrogen concentrations in runoff are documented from a large Greenland glacier, demonstrating seasonally elevated fluxes to the ocean. Fluxes are highest in mid-summer, when nitrogen limitation is commonly reported in coastal waters. It is estimated that approximately half of the glacially exported nitrogen is sourced from microbial activity within glacial sediments at the surface and bed of the ice sheet, doubling nitrogen fluxes in runoff. Summer dissolved inorganic nitrogen fluxes from the Greenland Ice Sheet (30–40 Gg) are a similar order of magnitude to those from a large Arctic river (Holmes et al., 2012). Nitrogen yields from the ice sheet (236 kg TDN km−2 a−1), however, are approximately double those from Arctic riverine catchments. We assert that this ice sheet nitrogen subsidy to Arctic coastal ecosystems may be important for understanding coastal biodiversity, productivity and fisheries and should be considered in future biogeochemical modelling studies of coastal marine productivity in the Arctic regions.


1996 ◽  
Vol 23 ◽  
pp. 181-186 ◽  
Author(s):  
R. S. W. van de Wal ◽  
S. Ekholm

In this paper the elevation model for the Greenland ice sheet based upon radio-echo-sounding flights of the Technical University of Denmark (TUD) (Letréguilly and others, 1991) are compared with the satellite-altimetry model (Tscherning and others, 1993) improved with airborne-laser and radar altimetry (IA model). Although the general hypsometry of both data sets is rather similar, differences seem to be large at individual points along the ice margin. Over the entire ice sheet, the difference between the IA model and the TUD model is 33 m with a root-mean-square error of 112 m. Differential GPS measurements collected in the ice-marginal zone near Søndre Strømfjord show that the IA model is more accurate than the TUD model. The latter data set underestimates the elevation by approximately 150 m in the ice-marginal zone near Søndre Strømfjord.Calculation of the ablation with an energy-balance model and with a degree-day model points to a 20% decrease in the ablation if the IA model is used. Not only does this show the sensitivity of ablation calculations to the orographic input but it also indicates that the ablation calculated by the models used nowadays is relatively overestimated.


1996 ◽  
Vol 23 ◽  
pp. 181-186 ◽  
Author(s):  
R. S. W. van de Wal ◽  
S. Ekholm

In this paper the elevation model for the Greenland ice sheet based upon radio-echo-sounding flights of the Technical University of Denmark (TUD) (Letréguilly and others, 1991) are compared with the satellite-altimetry model (Tscherning and others, 1993) improved with airborne-laser and radar altimetry (IA model). Although the general hypsometry of both data sets is rather similar, differences seem to be large at individual points along the ice margin. Over the entire ice sheet, the difference between the IA model and the TUD model is 33 m with a root-mean-square error of 112 m. Differential GPS measurements collected in the ice-marginal zone near Søndre Strømfjord show that the IA model is more accurate than the TUD model. The latter data set underestimates the elevation by approximately 150 m in the ice-marginal zone near Søndre Strømfjord. Calculation of the ablation with an energy-balance model and with a degree-day model points to a 20% decrease in the ablation if the IA model is used. Not only does this show the sensitivity of ablation calculations to the orographic input but it also indicates that the ablation calculated by the models used nowadays is relatively overestimated.


2008 ◽  
Vol 54 (185) ◽  
pp. 213-219 ◽  
Author(s):  
S.F. Price ◽  
A.J. Payne ◽  
G.A. Catania ◽  
T.A. Neumann

AbstractWe use an ice-flow model to demonstrate how flow variations initiated in the marginal zone of an ice sheet affect flow farther inland through longitudinal (along-flow) coupling. Our findings allow for an alternate interpretation of seasonal accelerations observed near the equilibrium line of the Greenland ice sheet (Zwally and others, 2002). We demonstrate that these observations can be explained by accelerations initiated up to 12 km closer to the margin where the ice is ∼40% thinner, is heavily crevassed, experiences a seasonal doubling of velocity, and where the ablation rate, surface meltwater flux and ice temperature are likely higher. Our modeling and observations suggest that conditions and processes normally found near ice-sheet margins are adequate for explaining the observations of Zwally and others (2002). This and considerations of the likely subglacial hydrology in the marginal zone lead us to suggest that seasonal accelerations may have limited impact on ice-sheet mass balance even in the face of climate warming.


1986 ◽  
Vol 130 ◽  
pp. 108-114
Author(s):  
N Reeh ◽  
H.H Thomsen

Stable isotope analysis has been used intensively in the investigation of snow and ice-cores retrieved from the central region of the Greenland ice sheet. The d 18O records from the deep ice cores drilled at Camp Century and Dye 3, for example, provided detailed climatic information for the past maybe more than 100 000 years (Dansgaard et al., 1985). However, although the marginal zone of the ice sheet is readily accessibie compared with the central region, little attention has been given to stable isotope studies in the marginal zone (the ablation zone).


Author(s):  
Henrik Højmark Thomsen ◽  
Niels Reeh ◽  
Ole B. Olesen ◽  
Carl Egede Bøggilde ◽  
Wolfgang Starzer ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Højmark Thomsen, H., Reeh, N., Olesen, O. B., Egede Bøggilde, C., Starzer, W., Weidick, A., & Higgins, A. K. (1997). The Nioghalvfjerdsfjorden glacier project, North-East Greenland: a study of ice sheet response to climatic change. Geology of Greenland Survey Bulletin, 176, 95-103. https://doi.org/10.34194/ggub.v176.5073 _______________ Glaciological research was initiated in 1996 on the floating glacier tongue filling Nioghalvfjerdsfjorden in NorthEast Greenland (Fig. 1), with the aim of acquiring a better understanding of the response of the Greenland ice sheet (Inland Ice) to changing climate, and the implications for future sea level. The research is part of a three year project (1996–98) to advance research into the basic processes that contribute to changes in the ocean volume with a changing climate. Five nations are participants in the project, which is supported by the European Community (EC) Environment and Climate Programme. The Geological Survey of Denmark and Greenland (GEUS) and the Danish Polar Center are the Danish partners in the project, both with integrated research themes concentrated on and around Nioghalvfjerdsfjorden.


Sign in / Sign up

Export Citation Format

Share Document