scholarly journals Thermal adaptation of net ecosystem exchange

2011 ◽  
Vol 8 (1) ◽  
pp. 1109-1136 ◽  
Author(s):  
W. Yuan ◽  
Y. Luo ◽  
S. Liang ◽  
G. Yu ◽  
S. Niu ◽  
...  

Abstract. Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (Tb) at which ecosystem transferring from carbon source to sink and optimal temperature (To) at which carbon uptake is maximized. Tb was strongly correlated with annual mean air temperature. To was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results suggested that ecosystem CO2 flux switched from source to sink when air temperature reached annual mean temperature in spring and reached maximum uptake at mean temperature of the net carbon uptake period. Our results imply that the net ecosystem exchange of carbon adapt to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.

2011 ◽  
Vol 8 (6) ◽  
pp. 1453-1463 ◽  
Author(s):  
W. Yuan ◽  
Y. Luo ◽  
S. Liang ◽  
G. Yu ◽  
S. Niu ◽  
...  

Abstract. Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (Tb) at which ecosystem transfer from carbon source to sink and optimal temperature (To) at which carbon uptake is maximized. Tb was strongly correlated with annual mean air temperature. To was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.


2018 ◽  
Vol 40 (2) ◽  
pp. 159 ◽  
Author(s):  
Luomeng Chao ◽  
Zhiqiang Wan ◽  
Yulong Yan ◽  
Rui Gu ◽  
Yali Chen ◽  
...  

Aspects of carbon exchange were investigated in typical steppe east of Xilinhot city in Inner Mongolia. Four treatments with four replicates were imposed in a randomised block design: Control (C), warming (T), increased precipitation (P) and combined warming and increased precipitation (TP). Increased precipitation significantly increased both ecosystem respiration (ER) and soil respiration (SR) rates. Warming significantly reduced the ER rate but not the SR rate. The combination of increased precipitation and warming produced an intermediate response. The sensitivity of ER and SR to soil temperature and air temperature was assessed by calculating Q10 values: the increase in respiration for a 10°C increase in temperature. Q10 was lowest under T and TP, and highest under P. Both ER and SR all had significantly positive correlation with soil moisture. Increased precipitation increased net ecosystem exchange and gross ecosystem productivity, whereas warming reduced them. The combination of warming and increased precipitation had an intermediate effect. Both net ecosystem exchange and gross ecosystem productivity were positively related to soil moisture and negatively related to soil and air temperature. These findings suggest that predicted climate change in this region, involving both increased precipitation and warmer temperatures, will increase the net ecosystem exchange in the Stipa steppe meaning that the ecosystem will fix more carbon.


2010 ◽  
Vol 7 (1) ◽  
pp. 429-462 ◽  
Author(s):  
C. Albergel ◽  
J.-C. Calvet ◽  
A.-L. Gibelin ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
...  

Abstract. In this work, a simple representation of the soil moisture effect on the ecosystem respiration is implemented into the A-gs version of the Interactions between Soil, Biosphere, and Atmosphere (ISBA) model. It results in an improvement of the modelled CO2 flux over a grassland, in southwestern France. The former temperature-only dependent respiration formulation used in ISBA-A-gs is not able to model the limitation of the respiration under dry conditions. In addition to soil moisture and soil temperature, the only parameter required in this formulation is the ecosystem respiration parameter Re25. It can be estimated by the mean of eddy covariance measurements of turbulent nighttime CO2 flux (i.e. ecosystem respiration). The resulting correlation between observed and modelled net ecosystem exchange is r2=0.63 with a bias of −2.18 μmol m−2 s−1. It is shown that when CO2 observations are not available, it is possible to use a more complex model, able to represent the heterotrophic respiration and all the components of the autotrophic respiration, to estimate Re25 with similar results. The modelled ecosystem respiration estimates are provided by the Carbon Cycle (CC) version of ISBA (ISBA-CC). ISBA-CC is a version of ISBA able to simulate all the respiration components whereas ISBA-A-gs uses a single equation for ecosystem respiration. ISBA-A-gs is easier to handle and more convenient than ISBA-CC for practical use in atmospheric or hydrological models. Surface water and energy flux observations as well as gross primary production (GPP) estimates are compared with model outputs. The dependence of GPP to air temperature is investigated. The observed GPP is less sensitive to temperature than the modelled GPP. Finally, the simulations of the ISBA-A-gs model are analysed over a seven year period (2001–2007). Modelled soil moisture and leaf area index (LAI) are confronted with the observed root-zone soil moisture content (m3 m−3), and with LAI estimates derived from surface reflectance measurements.


2021 ◽  
Author(s):  
Anders Lindroth ◽  
Norbert Pirk ◽  
Ingibjörg S. Jónsdóttir ◽  
Christian Stiegler ◽  
Leif Klemedtsson ◽  
...  

Abstract. We measured CO2 and CH4 fluxes using chambers and eddy covariance (only CO2) from a moist moss tundra in Svalbard. The average net ecosystem exchange (NEE) during the summer (June–August) was −0.40 g C m−2 day−1 or −37 g C m−2 for the whole summer. Including spring and autumn periods the NEE was reduced to −6.8 g C m−2 and the annual NEE became positive, 24.7 gC m−2 due to the losses during the winter. The CH4 flux during the summer period showed a large spatial and temporal variability. The mean value of all 214 samples was 0.000511 ± 0.000315 µmol m−2s−1 which corresponds to a growing season estimate of 0.04 to 0.16 g CH4 m−2. We find that this moss tundra emits about 94–100 g CO2-equivalents m−2 yr−1 of which CH4 is responsible for 3.5–9.3 % using GWP100 of 27.9 respectively GWP20. Air temperature, soil moisture and greenness index contributed significantly to explain the variation in ecosystem respiration (Reco) while active layer depth, soil moisture and greenness index were the variables that best explained CH4 emissions. Estimate of temperature sensitivity of Reco and gross primary productivity showed that a modest increase in air temperature of 1 degree did not significantly change the NEE during the growing season but that the annual NEE would be even more positive adding another 8.5 g C m−2 to the atmosphere. We tentatively suggest that the warming of the Arctic that has already taken place is partly responsible for the fact that the moist moss tundra now is a source of CO2 to the atmosphere.


2020 ◽  
Author(s):  
Aurelio Guevara-Escobar ◽  
Enrique González-Sosa ◽  
Mónica Cervantes-Jiménez ◽  
Humberto Suzán-Azpiri ◽  
Mónica Elisa Queijeiro-Bolaños ◽  
...  

Abstract. Vegetation fixes C in its biomass through photosynthesis or might release it into the atmosphere through respiration. Measurements of these fluxes would help us understand ecosystem functioning. The eddy covariance technique (EC) is widely used to measure the net ecosystem exchange of C (NEE) which is the balance between gross primary production (GPP) and ecosystem respiration (Reco). Orbital satellites such as MODIS can also provide estimates of GPP. In this study, we measured NEE with the EC in a scrub at Bernal in Mexico, and then partitioned into gross primary production (GPP-EC) and Reco using the recent R package Reddyproc. Measurements of GPP-EC were related to the estimates from the MODIS satellite provided in product MOD17A2H, which contains data of the gross primary productivity (GPP-MODIS). The Bernal site was a carbon sink despite it was an overgrazed site, the average NEE during fifteen months of 2017 and 2018 was −0.78 g C m−2 d−1 and the flux was negative in all measured months. The GPP-MODIS underestimated the ground data when representing the relation with a Theil-Sen regression: GPP-EC = 1.866 + 1.861 GPP-MODIS; an ordinary less squares regression had similar coefficients and the R2 was 0.6. Although cacti (CAM), legume shrubs (C3) and herbs (C3) had a similar vegetation index, the nighttime flux was characterized by positive NEE suggesting that the photosynthetic dark-cycle flux of cacti was lower than Reco. The discrepancy among the GPP flux estimates stresses the need to understand the limitations of EC and remote sensors, while incorporating complementary monitoring and modelling schemes of nighttime Reco, particularly in the presence of species with different photosynthetic cycles.


2009 ◽  
Vol 6 (4) ◽  
pp. 8215-8245 ◽  
Author(s):  
M. Zhang ◽  
G.-R. Yu ◽  
L.-M. Zhang ◽  
X.-M. Sun ◽  
X.-F. Wen ◽  
...  

Abstract. Clouds can significantly affect carbon uptake of forest ecosystems by affecting incoming solar radiation on the ground, temperature and other environmental factors. In this study, we analyzed the effects of cloudiness on the net ecosystem exchange of carbon dioxide (NEE) of a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS) and a subtropical evergreen broad-leaved forest at Dinghushan (DHS) of ChinaFLUX, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of the NEE of forest ecosystem to photosynthetically active radiation (PAR) was different under clear sky and cloudy sky conditions, and this difference was not consistent between CBS and DHS. Compared with clear skies, light-saturated maximum photosynthetic rate (Pec,max) of CBS during mid-growing season (from June to August) was respectively enhanced by 34%, 25%, 4% and 11% on cloudy skies in 2003, 2004, 2005 and 2006; however, Pec,max of DHS was higher under clear skies than under cloudy skies from 2004 to 2006. NEE of forests at CBS reached its maximum when the clearness index (kt) was between 0.4 and 0.6, and the NEE decreased obviously when kt exceeded 0.6. Compare with CBS, although NEE of forest at DHS tended to the maximum when kt varied between 0.4 and 0.6, the NEE did not decrease noticeably when kt exceeded 0.6. The results indicated that cloudy sky conditions were more beneficial to carbon uptake for the temperate forest ecosystem rather than for the subtropical forest ecosystem. This is due to the fact that the non-saturating light conditions and increase of diffuse radiation were more beneficial to photosynthesis, and the reduced temperature was more conducive to decreasing the ecosystem respiration in temperate forest ecosystems under cloudy sky conditions. This phenomenon is important to evaluate carbon uptake of temperate forests under climate change conditions.


2021 ◽  
Author(s):  
Martin Maddison ◽  
Gert Veber ◽  
Ain Kull

<p>Northern peatlands are important terrestrial carbon (C) stores, but their ability to sequestrate C is at delicate balance affected by management and also by climate change. The climate change causes less snow pack and warmer winters with faster water table drop in spring and drier summers in most boreal areas. Due to those changes natural peatlands may become C source instead of sink.</p><p>This study presents ecosystem respiration (ER) over five-year period and the annual estimates of net ecosystem exchange (NEE) of CO<sub>2</sub> in Umbusi and Laukasoo in Estonia along disturbance gradient from drained to natural ombrotrophic bog. Both study sites locate next to the active cutaway peatlands. There were four CO<sub>2</sub> flux measurements plots with three measurements points at different distance from the drainage ditch (10, 50, 100 and 200 m in Umbusi; 3, 40, 50, 125 m in Laukasoo) to form a water table depth and soil moisture gradient on both study sites. ER was measured using opaque static chamber throughout of the year in period 2012-2016. A vented and thermostated transparent plastic chamber with removable opaque cover was used for CO<sub>2</sub> exchange measurements. NEE measurements occurred biweekly from April to December in 2015, totally were done 648 measurements. NEE was derived from modelling of ER and gross primary production with temperature, photosynthetically active radiation, water level and days of year (as phenological phase) as driving variables.</p><p>Annual mean NEE at four different distance from the ditch toward undisturbed area in Umbusi and Laukasoo were 0.37, 0.28, 0.15, 0.08 and 0.44, 0.34, 0.04, 0.21 kg C m<sup>-2</sup> y<sup>-1</sup>, respectively. Although mean NEE was positive for all plots on both sites, there were also negative annual NEE values in some points in undisturbed plots (100 and 200 m from the ditch in Umbusi and 50 and 125 m in Laukasoo).</p><p>Average water level at four different distance from the ditch toward undisturbed area in Umbusi and Laukasoo during growing period (from the beginning of May to the end of October) in 2015 were -94, -45, -22, -22 and -124, -33, -21, -22 cm, respectively. Monthly mean air temperature and sum of precipitation were not different from the long-term measurements in studied growing period in 2015 while winter was significantly warmer.</p><p>Modelled ER remained high for cold period because of higher air temperature in 2015. Due to higher respiration rate from non-frozen peat layer in cold season, more CO<sub>2</sub> was released back to atmosphere and annually less C was accumulated. Monthly mean air temperature for cold period was 3.5 ºC warmer than the long-term average.</p>


2019 ◽  
Vol 12 (2) ◽  
pp. 227-244 ◽  
Author(s):  
Egor A. Dyukarev ◽  
Evgeniy A. Godovnikov ◽  
Dmitriy V. Karpov ◽  
Sergey A. Kurakov ◽  
Elena D. Lapshina ◽  
...  

2007 ◽  
Vol 4 (5) ◽  
pp. 803-816 ◽  
Author(s):  
C. M. J. Jacobs ◽  
A. F. G. Jacobs ◽  
F. C. Bosveld ◽  
D. M. D. Hendriks ◽  
A. Hensen ◽  
...  

Abstract. An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site, using the eddy-covariance (EC) technique, but in different years. The NEE does not include any import or export other than CO2. The photosynthesis-light response analysis technique is used along with the respiration-temperature response technique to partition NEE into Gross Primary Production (GPP) and Ecosystem Respiration (Re) and to obtain the eco-physiological characteristics of the sites at the field scale. Annual sums of NEE, GPP and Re are then estimated using the fitted response curves with observed radiation and air temperature from a meteorological site in the centre of The Netherlands as drivers. These calculations are carried out for four years (2002–2005). Land use and management histories are not considered. The estimated annual Re for all individual sites is more or less constant per site and the average for all sites amounts to 1390±30 gC m−2 a−1. The narrow uncertainty band (±2%) reflects the small differences in the mean annual air temperature. The mean annual GPP was estimated to be 1325 g C m−2 a−1, and displays a much higher standard deviation, of ±110 gC m−2 a−1 (8%), which reflects the relatively large variation in annual solar radiation. The mean annual NEE amounts to –65±85 gC m−2 a−1. From two sites, four-year records of CO2 flux were available and analyzed (2002–2005). Using the weather record of 2005 with optimizations from the other years, the standard deviation of annual GPP was estimated to be 171–206 gC m−2 a−1 (8–14%), of annual Re 227–247 gC m−2 a−1 (14–16%) and of annual NEE 176–276 gC m−2 a−1. The inter-site standard deviation was higher for GPP and Re, 534 gC m−2 a−1 (37.3%) and 486 gC m−2 a−1 (34.8%), respectively. However, the inter-site standard deviation of NEE was similar to the interannual one, amounting to 207 gC m−2 a−1. Large differences occur due to soil type. The grasslands on organic (peat) soils show a mean net release of CO2 of 220±90 g C m−2 a−1 while the grasslands on mineral (clay and sand) soils show a mean net uptake of CO2 of 90±90 g C m−2 a−1. If a weighing with the fraction of grassland on organic (20%) and mineral soils (80%) is applied, an average NEE of 28 ±90 g C m−2 a−1 is found. The results from the analysis illustrate the need for regionally specific and spatially explicit CO2 emission estimates from grassland.


2011 ◽  
Vol 8 (1) ◽  
pp. 1669-1691 ◽  
Author(s):  
B. C. Zhang ◽  
J. J. Cao ◽  
Y. F. Bai ◽  
S. J. Yang ◽  
L. Hu ◽  
...  

Abstract. Clouds can strongly influence solar radiation and affects other microclimatic factors (such as air temperature and vapour pressure deficit), and those changed environmental conditions may exert strong effects on carbon exchange between terrestrial ecosystems and the atmosphere. In this study, we analyzed how canopy photosynthesis and ecosystem respiration respond to changes in cloudy conditions, based on two years of eddy-covariance and meteorological data from an irrigated maize cropland in Yingke oasis of northwestern China. The results showed that net carbon uptake was more negative under cloudy than under clear conditions, it indicates that net carbon uptake increased under cloudy days. The rate of ecosystem respiration (Re) decreased under cloudy conditions due to decreased air temperature. However, photosynthesis was suppressed by the decreasing air temperature and vapour pressure deficit (VPD) under cloudy skies. Thus, the enhancement of net carbon uptake under cloudy skies mainly contributed from increasing photosynthesis with diffuse radiation. Those results improve our understanding of the effects of cloud cover on carbon exchange process in maize (C4) cropland, and improve our understanding of the driver improving net carbon uptake under cloudy conditions.


Sign in / Sign up

Export Citation Format

Share Document