scholarly journals Testing the consistency between changes in simulated climate and Alpine glacier length over the past millennium

2018 ◽  
Vol 14 (8) ◽  
pp. 1119-1133 ◽  
Author(s):  
Hugues Goosse ◽  
Pierre-Yves Barriat ◽  
Quentin Dalaiden ◽  
François Klein ◽  
Ben Marzeion ◽  
...  

Abstract. It is standard to compare climate model results covering the past millennium and reconstructions based on various archives in order to test the ability of models to reproduce the observed climate variability. Up to now, glacier length fluctuations have not been used systematically in this framework even though they offer information on multi-decadal to centennial variations complementary to other records. One reason is that glacier length depends on several complex factors and so cannot be directly linked to the simulated climate. However, climate model skill can be measured by comparing the glacier length computed by a glacier model driven by simulated temperature and precipitation to observed glacier length variations. This is done here using the version 1.0 of the Open Global Glacier Model (OGGM) forced by fields derived from a range of simulations performed with global climate models over the past millennium. The glacier model is applied to a set of Alpine glaciers for which observations cover at least the 20th century. The observed glacier length fluctuations are generally well within the range of the simulations driven by the various climate model results, showing a general consistency with this ensemble of simulations. Sensitivity experiments indicate that the results are much more sensitive to the simulated climate than to OGGM parameters. This confirms that the simulations of glacier length can be used to evaluate the climate model performance, in particular the simulated summer temperatures that largely control the glacier changes in our region of interest. Simulated glacier length is strongly influenced by the internal variability in the system, putting limitations on the model–data comparison for some variables like the trends over the 20th century in the Alps. Nevertheless, comparison of glacier length fluctuations on longer timescales, for instance between the 18th century and the late 20th century, appear less influenced by the natural variability and indicate clear differences in the behaviour of the various climate models.

2018 ◽  
Author(s):  
Hugues Goosse ◽  
Pierre-Yves Barriat ◽  
Quentin Dalaiden ◽  
François Klein ◽  
Ben Marzeion ◽  
...  

Abstract. It is standard to compare climate model results covering the past millennium and reconstructions based on various archives in order to test the ability of models to reproduce the observed climate variability. Up to now, glacier length fluctuations have not been used systematically in this framework even though they offer information on multi-decadal to centennial variations complementary to other records. One reason is that glacier length depends on several complex factors and so cannot be directly linked to the simulated climate. However, climate model skill can be measured by comparing the glacier length computed by a glacier model driven by simulated temperature and precipitation to observed glacier length variations. This is done here using the version 1.0 of Open Global Glacier Model (OGGM) forced by fields derived from a range of simulations performed with global climate models over the past millennium. The glacier model is applied to a set of Alpine glaciers for which observations cover at least the 20th century. The observed glacier length fluctuations are generally well within the range of the simulations driven by the various climate model results, showing a general consistency with this ensemble of simulations. Sensitivity experiments indicate that the results are much more sensitive to the simulated climate than to OGGM parameters. This confirms that the simulations of glacier length can be used to evaluate the climate model performance, in particular the summer temperatures that largely control the glacier changes in our region of interest. Simulated glacier length is strongly influenced by the internal variability of the system, putting limitations on the model-data comparison for some variables like the trends over the 20th century in the Alps. Nevertheless, comparison of glacier length fluctuations on longer timescales, for instance between the 18th century and the late 20th century, appear less influenced by the natural variability and indicate clear differences in the behaviour of the various climate models.


2001 ◽  
Vol 33 ◽  
pp. 444-448 ◽  
Author(s):  
John E. Walsh ◽  
William L. Chapman

AbstractIn order to extend diagnoses of recent sea-ice variations beyond the past few decades, a century-scale digital dataset of Arctic sea-ice coverage has been compiled. For recent decades, the compilation utilizes satellite-derived hemispheric datasets. Regional datasets based primarily on ship reports and aerial reconnaissance are the primary inputs for the earlier part of the 20th century. While the various datasets contain some discrepancies, they capture the same general variations during their period of overlap. The outstanding feature of the time series of total hemispheric ice extent is a decrease that has accelerated during the past several decades. The decrease is greatest in summer and weakest in winter, contrary to the seasonality of the greenhouse changes projected by most global climate models. The primary spatial modes of sea-ice variability diagnosed in terms of empirical orthogonal functions, also show a strong seasonality. The first winter mode is dominated by an opposition of anomalies in the western and eastern North Atlantic, corresponding to the well-documented North Atlantic Oscillation. The primary summer mode depicts an anomaly of the same sign over nearly the entire Arctic and captures the recent trend of sea-ice coverage.


2020 ◽  
Vol 33 (14) ◽  
pp. 5885-5903 ◽  
Author(s):  
Elinor R. Martin ◽  
Cameron R. Homeyer ◽  
Roarke A. McKinzie ◽  
Kevin M. McCarthy ◽  
Tao Xian

AbstractChanges in tropical width can have important consequences in sectors including ecosystems, agriculture, and health. Observations suggest tropical expansion over the past 30 years although studies have not agreed on the magnitude of this change. Climate model projections have also indicated an expansion and show similar uncertainty in its magnitude. This study utilizes an objective, longitudinally varying, tropopause break method to define the extent of the tropics at upper levels. The location of the tropopause break is associated with enhanced stratosphere–troposphere exchange and thus its structure influences the chemical composition of the stratosphere. The method shows regional variations in the width of the upper-level tropics in the past and future. Four modern reanalyses show significant contraction of the tropics over the eastern Pacific between 1981 and 2015, and slight but significant expansion in other regions. The east Pacific narrowing contributes to zonal mean narrowing, contradicting prior work, and is attributed to the use of monthly and zonal mean data in prior studies. Six global climate models perform well in representing the climatological location of the tropical boundary. Future projections show a spread in the width trend (from ~0.5° decade−1 of narrowing to ~0.4° decade−1 of widening), with a narrowing projected across the east Pacific and Northern Hemisphere Americas. This study illustrates that this objective tropopause break method that uses instantaneous data and does not require zonal averaging is appropriate for identifying upper-level tropical width trends and the break location is connected with local and regional changes in precipitation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


2021 ◽  
pp. 1-69
Author(s):  
Zane Martin ◽  
Clara Orbe ◽  
Shuguang Wang ◽  
Adam Sobel

AbstractObservational studies show a strong connection between the intraseasonal Madden-Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO): the boreal winter MJO is stronger, more predictable, and has different teleconnections when the QBO in the lower stratosphere is easterly versus westerly. Despite the strength of the observed connection, global climate models do not produce an MJO-QBO link. Here the authors use a current-generation ocean-atmosphere coupled NASA Goddard Institute for Space Studies global climate model (Model E2.1) to examine the MJO-QBO link. To represent the QBO with minimal bias, the model zonal mean stratospheric zonal and meridional winds are relaxed to reanalysis fields from 1980-2017. The model troposphere, including the MJO, is allowed to freely evolve. The model with stratospheric nudging captures QBO signals well, including QBO temperature anomalies. However, an ensemble of nudged simulations still lacks an MJO-QBO connection.


2017 ◽  
Author(s):  
Matthew C. Wozniak ◽  
Allison Steiner

Abstract. We develop a prognostic model of Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in a regional climate model (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model: (1) using a taxa-specific land cover database, phenology and emission potential, and (2) a PFT-based land cover, phenology and emission potential. The resulting surface concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model, however we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 255 ◽  
Author(s):  
Thomas J. Bracegirdle ◽  
Florence Colleoni ◽  
Nerilie J. Abram ◽  
Nancy A. N. Bertler ◽  
Daniel A. Dixon ◽  
...  

Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this.


2018 ◽  
Vol 32 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Sicheng He ◽  
Jing Yang ◽  
Qing Bao ◽  
Lei Wang ◽  
Bin Wang

AbstractRealistic reproduction of historical extreme precipitation has been challenging for both reanalysis and global climate model (GCM) simulations. This work assessed the fidelities of the combined gridded observational datasets, reanalysis datasets, and GCMs [CMIP5 and the Chinese Academy of Sciences Flexible Global Ocean–Atmospheric Land System Model–Finite-Volume Atmospheric Model, version 2 (FGOALS-f2)] in representing extreme precipitation over East China. The assessment used 552 stations’ rain gauge data as ground truth and focused on the probability distribution function of daily precipitation and spatial structure of extreme precipitation days. The TRMM observation displays similar rainfall intensity–frequency distributions as the stations. However, three combined gridded observational datasets, four reanalysis datasets, and most of the CMIP5 models cannot capture extreme precipitation exceeding 150 mm day−1, and all underestimate extreme precipitation frequency. The observed spatial distribution of extreme precipitation exhibits two maximum centers, located over the lower-middle reach of Yangtze River basin and the deep South China region, respectively. Combined gridded observations and JRA-55 capture these two centers, but ERA-Interim, MERRA, and CFSR and almost all CMIP5 models fail to capture them. The percentage of extreme rainfall in the total rainfall amount is generally underestimated by 25%–75% in all CMIP5 models. Higher-resolution models tend to have better performance, and physical parameterization may be crucial for simulating correct extreme precipitation. The performances are significantly improved in the newly released FGOALS-f2 as a result of increased resolution and a more realistic simulation of moisture and heating profiles. This work pinpoints the common biases in the combined gridded observational datasets and reanalysis datasets and helps to improve models’ simulation of extreme precipitation, which is critically important for reliable projection of future changes in extreme precipitation.


Sign in / Sign up

Export Citation Format

Share Document