scholarly journals Interhemispheric effect of global geography on Earth's climate response to orbital forcing

2019 ◽  
Vol 15 (1) ◽  
pp. 377-388
Author(s):  
Rajarshi Roychowdhury ◽  
Robert DeConto

Abstract. The climate response of the Earth to orbital forcing shows a distinct hemispheric asymmetry due to the unequal distribution of land in the Northern Hemisphere versus Southern Hemisphere. This asymmetry is examined using a global climate model (GCM) for different climate responses such as mean summer temperatures and positive degree days. A land asymmetry effect (LAE) is quantified for each hemisphere and the results show how changes in obliquity and precession translate into variations in the calculated LAE. We find that the global climate response to specific past orbits is likely unique and modified by complex climate–ocean–cryosphere interactions that remain poorly known. Nonetheless, these results provide a baseline for interpreting contemporaneous proxy climate data spanning a broad range of latitudes, which may be useful in paleoclimate data–model comparisons, and individual time-continuous records exhibiting orbital cyclicity.

2016 ◽  
Author(s):  
R. Roychowdhury ◽  
R. M. DeConto

Abstract. The climate response to orbital forcing shows a distinct hemispheric asymmetry due to the unequal distribution of land in the Northern vs. Southern hemispheres. This asymmetry is examined using a Global Climate Model (GCM) and a Land Hemispheric Bias (LHB) is quantified for each hemisphere. The results show how changes in obliquity and precession translate into variations in the calculated LHB. We find that the global climate response to specific past orbits is likely unique and modified by complex climate-ocean-cryosphere interactions that remain poorly known and difficult to model. Nonetheless, these results provide a baseline for interpreting contemporaneous proxy climate data spanning a broad range of latitudes, which maybe especially useful in paleoclimate data-model comparisons, and individual time-continuous records exhibiting orbital cyclicity.


2017 ◽  
Author(s):  
Rajarshi Roychowdhury ◽  
Robert DeConto

Abstract. The climate response of the Earth to orbital forcing shows a distinct hemispheric asymmetry due to the unequal distribution of land in the Northern versus Southern Hemispheres. This asymmetry is examined using a Global Climate Model (GCM) and a Land Asymmetry Effect (LAE) is quantified for each hemisphere. The results show how changes in obliquity and precession translate into variations in the calculated LAE. We find that the global climate response to specific past orbits is likely unique and modified by complex climate–ocean–cryosphere interactions that remain poorly known and difficult to model. Nonetheless, these results provide a baseline for interpreting contemporaneous proxy climate data spanning a broad range of latitudes, which maybe especially useful in paleoclimate data-model comparisons, and individual time-continuous records exhibiting orbital cyclicity.


2021 ◽  
Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

<p>This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data”. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,  we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.</p>


2019 ◽  
Vol 32 (23) ◽  
pp. 8323-8333 ◽  
Author(s):  
Sijia Lou ◽  
Yang Yang ◽  
Hailong Wang ◽  
Jian Lu ◽  
Steven J. Smith ◽  
...  

ABSTRACT El Niño–Southern Oscillation (ENSO) is the leading mode of Earth’s climate variability at interannual time scales with profound ecological and societal impacts, and it is projected to intensify in many climate models as the climate warms under the forcing of increasing CO2 concentration. Since the preindustrial era, black carbon (BC) emissions have substantially increased in the Northern Hemisphere. But how BC aerosol forcing may influence the occurrence of the extreme ENSO events has rarely been investigated. In this study, using simulations of a global climate model, we show that increases in BC emissions from both the midlatitudes and Arctic weaken latitudinal temperature gradients and northward heat transport, decrease tropical energy divergence, and increase sea surface temperature over the tropical oceans, with a surprising consequential increase in the frequency of extreme ENSO events. A corollary of this study is that reducing BC emissions might serve to mitigate the possible increasing frequency of extreme ENSO events under greenhouse warming, if the modeling result can be translated into the climate in reality.


Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 72 ◽  
Author(s):  
Abhishek Gaur ◽  
Michael Lacasse ◽  
Marianne Armstrong

Buildings and homes in Canada will be exposed to unprecedented climatic conditions in the future as a consequence of global climate change. To improve the climate resiliency of existing and new buildings, it is important to evaluate their performance over current and projected future climates. Hygrothermal and whole building simulation models, which are important tools for assessing performance, require continuous climate records at high temporal frequencies of a wide range of climate variables for input into the kinds of models that relate to solar radiation, cloud-cover, wind, humidity, rainfall, temperature, and snow-cover. In this study, climate data that can be used to assess the performance of building envelopes under current and projected future climates, concurrent with 2 °C and 3.5 °C increases in global temperatures, are generated for 11 major Canadian cities. The datasets capture the internal variability of the climate as they are comprised of 15 realizations of the future climate generated by dynamically downscaling future projections from the CanESM2 global climate model and thereafter bias-corrected with reference to observations. An assessment of the bias-corrected projections suggests, as a consequence of global warming, future increases in the temperatures and precipitation, and decreases in the snow-cover and wind-speed for all cities.


2020 ◽  
Vol 117 (41) ◽  
pp. 25319-25326
Author(s):  
Yuem Park ◽  
Pierre Maffre ◽  
Yves Goddéris ◽  
Francis A. Macdonald ◽  
Eliel S. C. Anttila ◽  
...  

Steep topography, a tropical climate, and mafic lithologies contribute to efficient chemical weathering and carbon sequestration in the Southeast Asian islands. Ongoing arc–continent collision between the Sunda-Banda arc system and Australia has increased the area of subaerially exposed land in the region since the mid-Miocene. Concurrently, Earth’s climate has cooled since the Miocene Climatic Optimum, leading to growth of the Antarctic ice sheet and the onset of Northern Hemisphere glaciation. We seek to evaluate the hypothesis that the emergence of the Southeast Asian islands played a significant role in driving this cooling trend through increasing global weatherability. To do so, we have compiled paleoshoreline data and incorporated them into GEOCLIM, which couples a global climate model to a silicate weathering model with spatially resolved lithology. We find that without the increase in area of the Southeast Asian islands over the Neogene, atmosphericpCO2would have been significantly higher than preindustrial values, remaining above the levels necessary for initiating Northern Hemisphere ice sheets.


2020 ◽  
Author(s):  
Gerald Lim ◽  
Aurel Moise ◽  
Raizan Rahmat ◽  
Bertrand Timbal

<p>Southeast Asia (SEA) is a rapidly developing and densely populated region that is home to over 600 million people. This, together with the region’s high sensitivity, exposure and low adaptive capacities, makes it particularly vulnerable to climate change and extremes such as floods, droughts and tropical cyclones. While the last decade saw some countries in SEA develop their own climate change projections, studies were largely uncoordinated and most countries still lack the capability to independently produce robust future climate information. Following a proposal from the World Meteorological Organisation (WMO) Regional Association (RA) V working group on climate services, the ASEAN Regional Climate Data, Analysis and Projections (ARCDAP) workshop series was conceived in 2017 to bridge these gaps in regional synergies. The ARCDAP series has been organised annually since 2018 by the ASEAN Specialised Meteorological Centre (hosted by Meteorological Service Singapore) with support from WMO through the Canada-funded Climate Risk and Early Warning Systems (Canada-CREWS) initiative.</p><p>This presentation will cover the activities and outcomes from the first two workshops, as well as the third which will be held in February 2020. The ARCDAP series has so far brought together representatives from ASEAN National Meteorological and Hydrological Services (NMHSs), climate scientists and end-users from policy-making and a variety of vulnerability and impact assessment (VIA) sectors, to discuss and identify best practices regarding the delivery of climate change information, data usage and management, advancing the science etc. Notable outputs include two comprehensive workshop reports and a significant regional contribution to the HadEX3 global land in-situ-based dataset of temperature and precipitation extremes, motivated by work done with the ClimPACT2 software.</p><p>The upcoming third workshop will endeavour to encourage the uptake of the latest ensemble of climate simulations from the Coupled Model Intercomparison Project (CMIP6) using CMIP-endorsed tools such as ESMValTool. This will address the need for ASEAN climate change practitioners to upgrade their knowledge of the latest global climate model database. It is anticipated that with continued support from WMO, the series will continue with the Fourth workshop targeting the assessment of downscaling experiments in 2021.</p>


2013 ◽  
Vol 17 (12) ◽  
pp. 4941-4956 ◽  
Author(s):  
V. Mahat ◽  
A. Anderson

Abstract. Rivers in Southern Alberta are vulnerable to climate change because much of the river water originates as snow in the eastern slopes of the Rocky Mountains. Changes in likelihood of forest disturbance (wildfire, insects, logging, etc.) may also have impacts that are compounded by climate change. This study evaluates the impacts of climate and forest changes on streamflow in the upper parts of the Oldman River in Southern Alberta using a conceptual hydrological model, HBV-EC (Hydrologiska Byråns attenbalansavdelning, Environment Canada), in combination with a stochastic weather generator (LARS-WG) driven by GCM (global climate model) output climate data. Three climate change scenarios (A1B, A2 and B1) are selected to cover the range of possible future climate conditions (2020s, 2050s, and 2080s). The GCM projected less than a 10% increase in precipitation in winter and a similar amount of precipitation decrease in summer. These changes in projected precipitation resulted in up to a 200% (9.3 mm) increase in winter streamflow in February and up to a 63% (31.2 mm) decrease in summer flow in June. Flow also decreased in July and August, when irrigation is important; these reduced river flows during this season could impact agriculture production. The amplification in the streamflow is mostly driven by the projected increase in temperature that is predicted to melt winter snow earlier, resulting in lower water availability during the summer. Uncertainty analysis was completed using a guided GLUE (generalized likelihood uncertainty estimation) approach to obtain the best 100 parameter sets and associated ranges of streamflows. The impacts of uncertainty in streamflows were higher in spring and summer than in winter and fall. Forest change compounded the climate change impact by increasing the winter flow; however, it did not reduce the summer flow.


2013 ◽  
Vol 10 (7) ◽  
pp. 8503-8536 ◽  
Author(s):  
V. Mahat ◽  
A. Anderson

Abstract. Rivers in Southern Alberta are vulnerable to climate change because much of the river water originates as snow in the eastern slopes of the Rocky Mountains. Changes in likelihood of forest disturbance (wildfire, insects, logging, etc.) may also have impacts that are compounded by climate change. This study evaluates the impacts of climate and forest changes on streamflow in the upper parts of the Oldman River in Southern Alberta using a conceptual hydrological model, HBV-EC in combination with a stochastic weather generator (LARS-WG) driven by GCM (Global Climate Model) output climate data. Three climate change scenarios (A1B, A2 and B1) are selected to cover the range of possible future climate conditions (2020s, 2050s, and 2080s). GCM projected less than a 10% increase in precipitation in winter and a similar amount of precipitation decrease in summer. These changes in projected precipitation resulted in up to a 200% (9.3 mm) increase in winter streamflow in February and up to a 63% (31.2 mm) decrease in summer flow in June. This amplification is mostly driven by the projected increase in temperature that is predicted to melt winter snow earlier, possibly resulting in lower water availability in the snowmelt dominated regions during the summer. Uncertainty analysis was completed using a guided GLUE (generalized likelihood uncertainty estimation) approach to obtain the best 100 parameter sets and associated ranges of streamflows. The impacts of uncertainty were higher in spring and summer flows than in winter and fall flows. Forest change compounded the climate change impact by increasing winter flow; however, it did not reduce the summer flow.


Sign in / Sign up

Export Citation Format

Share Document