scholarly journals Climate Data to Undertake Hygrothermal and Whole Building Simulations Under Projected Climate Change Influences for 11 Canadian Cities

Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 72 ◽  
Author(s):  
Abhishek Gaur ◽  
Michael Lacasse ◽  
Marianne Armstrong

Buildings and homes in Canada will be exposed to unprecedented climatic conditions in the future as a consequence of global climate change. To improve the climate resiliency of existing and new buildings, it is important to evaluate their performance over current and projected future climates. Hygrothermal and whole building simulation models, which are important tools for assessing performance, require continuous climate records at high temporal frequencies of a wide range of climate variables for input into the kinds of models that relate to solar radiation, cloud-cover, wind, humidity, rainfall, temperature, and snow-cover. In this study, climate data that can be used to assess the performance of building envelopes under current and projected future climates, concurrent with 2 °C and 3.5 °C increases in global temperatures, are generated for 11 major Canadian cities. The datasets capture the internal variability of the climate as they are comprised of 15 realizations of the future climate generated by dynamically downscaling future projections from the CanESM2 global climate model and thereafter bias-corrected with reference to observations. An assessment of the bias-corrected projections suggests, as a consequence of global warming, future increases in the temperatures and precipitation, and decreases in the snow-cover and wind-speed for all cities.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
Carlos Garijo ◽  
Luis Mediero

Climate model projections can be used to assess the expected behaviour of extreme precipitations in the future due to climate change. The European part of the Coordinated Regional Climate Downscalling Experiment (EURO-CORDEX) provides precipitation projections for the future under various representative concentration pathways (RCPs) through regionalised Global Climate Model (GCM) outputs by a set of Regional Climate Models (RCMs). In this work, 12 combinations of GCM and RCM under two scenarios (RCP 4.5 and RCP 8.5) supplied by the EURO-CORDEX are analysed for the Iberian Peninsula. Precipitation quantiles for a set of probabilities of non-exceedance are estimated by using the Generalized Extreme Value (GEV) distribution and L-moments. Precipitation quantiles expected in the future are compared with the precipitation quantiles in the control period for each climate model. An approach based on Monte Carlo simulations is developed in order to assess the uncertainty from the climate model projections. Expected changes in the future are compared with the sampling uncertainty in the control period. Thus, statistically significant changes are identified. The higher the significance threshold, the fewer cells with significant changes are identified. Consequently, a set of maps are obtained in order to assist the decision-making process in subsequent climate change studies.



2020 ◽  
Author(s):  
Gerald Lim ◽  
Aurel Moise ◽  
Raizan Rahmat ◽  
Bertrand Timbal

<p>Southeast Asia (SEA) is a rapidly developing and densely populated region that is home to over 600 million people. This, together with the region’s high sensitivity, exposure and low adaptive capacities, makes it particularly vulnerable to climate change and extremes such as floods, droughts and tropical cyclones. While the last decade saw some countries in SEA develop their own climate change projections, studies were largely uncoordinated and most countries still lack the capability to independently produce robust future climate information. Following a proposal from the World Meteorological Organisation (WMO) Regional Association (RA) V working group on climate services, the ASEAN Regional Climate Data, Analysis and Projections (ARCDAP) workshop series was conceived in 2017 to bridge these gaps in regional synergies. The ARCDAP series has been organised annually since 2018 by the ASEAN Specialised Meteorological Centre (hosted by Meteorological Service Singapore) with support from WMO through the Canada-funded Climate Risk and Early Warning Systems (Canada-CREWS) initiative.</p><p>This presentation will cover the activities and outcomes from the first two workshops, as well as the third which will be held in February 2020. The ARCDAP series has so far brought together representatives from ASEAN National Meteorological and Hydrological Services (NMHSs), climate scientists and end-users from policy-making and a variety of vulnerability and impact assessment (VIA) sectors, to discuss and identify best practices regarding the delivery of climate change information, data usage and management, advancing the science etc. Notable outputs include two comprehensive workshop reports and a significant regional contribution to the HadEX3 global land in-situ-based dataset of temperature and precipitation extremes, motivated by work done with the ClimPACT2 software.</p><p>The upcoming third workshop will endeavour to encourage the uptake of the latest ensemble of climate simulations from the Coupled Model Intercomparison Project (CMIP6) using CMIP-endorsed tools such as ESMValTool. This will address the need for ASEAN climate change practitioners to upgrade their knowledge of the latest global climate model database. It is anticipated that with continued support from WMO, the series will continue with the Fourth workshop targeting the assessment of downscaling experiments in 2021.</p>



2013 ◽  
Vol 17 (12) ◽  
pp. 4941-4956 ◽  
Author(s):  
V. Mahat ◽  
A. Anderson

Abstract. Rivers in Southern Alberta are vulnerable to climate change because much of the river water originates as snow in the eastern slopes of the Rocky Mountains. Changes in likelihood of forest disturbance (wildfire, insects, logging, etc.) may also have impacts that are compounded by climate change. This study evaluates the impacts of climate and forest changes on streamflow in the upper parts of the Oldman River in Southern Alberta using a conceptual hydrological model, HBV-EC (Hydrologiska Byråns attenbalansavdelning, Environment Canada), in combination with a stochastic weather generator (LARS-WG) driven by GCM (global climate model) output climate data. Three climate change scenarios (A1B, A2 and B1) are selected to cover the range of possible future climate conditions (2020s, 2050s, and 2080s). The GCM projected less than a 10% increase in precipitation in winter and a similar amount of precipitation decrease in summer. These changes in projected precipitation resulted in up to a 200% (9.3 mm) increase in winter streamflow in February and up to a 63% (31.2 mm) decrease in summer flow in June. Flow also decreased in July and August, when irrigation is important; these reduced river flows during this season could impact agriculture production. The amplification in the streamflow is mostly driven by the projected increase in temperature that is predicted to melt winter snow earlier, resulting in lower water availability during the summer. Uncertainty analysis was completed using a guided GLUE (generalized likelihood uncertainty estimation) approach to obtain the best 100 parameter sets and associated ranges of streamflows. The impacts of uncertainty in streamflows were higher in spring and summer than in winter and fall. Forest change compounded the climate change impact by increasing the winter flow; however, it did not reduce the summer flow.



2021 ◽  
Author(s):  
Henrique Moreno Dumont Goulart ◽  
Bart van den Hurk ◽  
Karin van der Wiel

<p>Weather events are a common cause for crop failures all over the world. Whilst extreme weather conditions may cause extreme impacts, the most common type of failure-inducing weather events are compounded. For these cases, explaining which conditions triggered a failure event is a complex task, as the links connecting climate and crop yield can be multiple and non-linear. On top of that, the climate change is likely to perturb the interface between climate and agriculture, possibly altering the occurrences or the drivers of crop failures, or generating new types of extreme impacts. In this context, the goal of this study is to demonstrate how global warming can affect the climate-crop connection. For that, we use a storyline approach and focus on an observed failure event, the extreme low soybean production during the 2012 season in hotspots regions, such as the Midwest US, Brazil and Argentina. The scale of this event drove the global soybean prices to the highest values ever recorded. We set out to quantify the change in occurrence of similar events in a warmer scenario. The storylines allow for event attribution, where a given impact can be examined and its causes disentangled. Here, four hotspots of soybean production are examined to contemplate the local consequences of climate change. The study is divided in two parts. We first link climatic features with soybean yields. For each hotspot region, a random forest classifier model is used to establish which meteorological variables are most important and how they are correlated with low soybean yields. With the model trained, we identify the climatic conditions that lead to the 2012 event. Second, we explore the influence of global warming on crop failures. Three large ensembles of simulated weather are obtained from the EC-Earth global climate model, one relating to the present-day period (including the 2012 event) and two relating to future periods with different levels of future warming . We apply the random forest model to these data, and obtain failure statistics for both present and future conditions, isolating the influence of climate change on the soybean failure.  </p>



2013 ◽  
Vol 10 (7) ◽  
pp. 8503-8536 ◽  
Author(s):  
V. Mahat ◽  
A. Anderson

Abstract. Rivers in Southern Alberta are vulnerable to climate change because much of the river water originates as snow in the eastern slopes of the Rocky Mountains. Changes in likelihood of forest disturbance (wildfire, insects, logging, etc.) may also have impacts that are compounded by climate change. This study evaluates the impacts of climate and forest changes on streamflow in the upper parts of the Oldman River in Southern Alberta using a conceptual hydrological model, HBV-EC in combination with a stochastic weather generator (LARS-WG) driven by GCM (Global Climate Model) output climate data. Three climate change scenarios (A1B, A2 and B1) are selected to cover the range of possible future climate conditions (2020s, 2050s, and 2080s). GCM projected less than a 10% increase in precipitation in winter and a similar amount of precipitation decrease in summer. These changes in projected precipitation resulted in up to a 200% (9.3 mm) increase in winter streamflow in February and up to a 63% (31.2 mm) decrease in summer flow in June. This amplification is mostly driven by the projected increase in temperature that is predicted to melt winter snow earlier, possibly resulting in lower water availability in the snowmelt dominated regions during the summer. Uncertainty analysis was completed using a guided GLUE (generalized likelihood uncertainty estimation) approach to obtain the best 100 parameter sets and associated ranges of streamflows. The impacts of uncertainty were higher in spring and summer flows than in winter and fall flows. Forest change compounded the climate change impact by increasing winter flow; however, it did not reduce the summer flow.



2010 ◽  
Vol 6 (5) ◽  
pp. 674-677 ◽  
Author(s):  
Michael R. Kearney ◽  
Natalie J. Briscoe ◽  
David J. Karoly ◽  
Warren P. Porter ◽  
Melanie Norgate ◽  
...  

There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted −1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.



2010 ◽  
Vol 5 (No. 1) ◽  
pp. 28-38 ◽  
Author(s):  
M. Remrová ◽  
M. Císlerová

This study has been conducted with the aim to analyse the hydrology balance in the experimental watershed Uhlířská under the actual atmospheric conditions and expected climate changes in the upcoming years. The main accent is put on the water availability for the water root uptake by the dominant grass vegetation (Calamagrostis villosa). Special attention is paid to the seasonal potential evapotranspiration estimation under mountain climatic conditions. Three methods for the potential evapotranspiration quantification are analysed in order to find out the most acceptable approach for future periods for which no adequate weather data are available. The future precipitation and temperature data are simulated by the regional climate model HIRHAM which is driven by global climate model HadCM3. The data are simulated for the period from 2071 to 2100. The modelling of the soil water movement (using S1D model) is carried out on selected 18 years from the period of 1961–2005 and on selected 10 climate-change-affected years with extremely low precipitations high temperatures. The results of the scenario presented do not indicate that the climatic changes should significantly affect the hydrological balance in the studied area in terms of evapotranspiration up to the year 2100. Due to the lower seasonal precipitation and higher air the temperature, was increased in the results of simulations under the defined approach, however, the local vegetation cover did not suffer from insufficient water supply. These considerations are close to the simulation models used.



2018 ◽  
Author(s):  
Collin B. Edwards ◽  
Louie Yang

AbstractSeveral studies have documented a global pattern of phenological advancement that is consistent with ongoing climate change. However, the magnitude of these phenological shifts is highly variable across taxa and locations. This variability of phenological responses has been difficult to explain mechanistically. To examine how the evolution of multi-trait cueing strategies could produce variable responses to climate change, we constructed a model in which organisms evolve strategies that integrate multiple environmental cues to inform anticipatory phenological decisions. We simulated the evolution of phenological cueing strategies in multiple environments, using historic climate data from 78 locations in North America and Hawaii to capture features of climatic correlation structures in the real world. Organisms in our model evolved diverse strategies that were spatially autocorrelated across locations on a continental scale, showing that similar strategies tend to evolve in similar climates. Within locations, organisms often evolved a wide range of strategies that showed similar response phenotypes and fitness outcomes under historical conditions. However, these strategies responded differently to novel climatic conditions, with variable fitness consequences. Our model shows how the evolution of phenological cueing strategies can explain observed variation in phenological shifts and unexpected responses to climate change.



2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.



2021 ◽  
Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

<p>This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data”. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,  we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.</p>



Sign in / Sign up

Export Citation Format

Share Document