scholarly journals Dynamical and hydrological changes in climate simulations of the last millennium

2020 ◽  
Vol 16 (4) ◽  
pp. 1285-1307
Author(s):  
Pedro José Roldán-Gómez ◽  
Jesús Fidel González-Rouco ◽  
Camilo Melo-Aguilar ◽  
Jason E. Smerdon

Abstract. Simulations of climate of the last millennium (LM) show that external forcing had a major contribution to the evolution of temperatures; warmer and colder periods like the Medieval Climate Anomaly (MCA; ca. 950–1250 CE) and the Little Ice Age (LIA; ca. 1450–1850 CE) were critically influenced by changes in solar and volcanic activity. Even if this influence is mainly observed in terms of temperatures, evidence from simulations and reconstructions shows that other variables related to atmospheric dynamics and hydroclimate were also influenced by external forcing over some regions. In this work, simulations from the Coupled Model Intercomparison Project Phase 5 and Paleoclimate Modelling Intercomparison Project Phase 3 (CMIP5/PMIP3) are analyzed to explore the influence of external forcings on the dynamical and hydrological changes during the LM at different spatial and temporal scales. Principal component (PC) analysis is used to obtain the modes of variability governing the global evolution of climate and to assess their correlation with the total external forcing at multidecadal to multicentennial timescales. For shorter timescales, a composite analysis is used to address the response to specific events of external forcing like volcanic eruptions. The results show coordinated long-term changes in global circulation patterns, which suggest expansions and contractions of the Hadley cells and latitudinal displacements of westerlies in response to external forcing. For hydroclimate, spatial patterns of drier and wetter conditions in areas influenced by the North Atlantic Oscillation (NAO), Northern Annular Mode (NAM), and Southern Annular Mode (SAM) and alterations in the intensity and distribution of monsoons and convergence zones are consistently found. Similarly, a clear short-term response is found in the years following volcanic eruptions. Although external forcing has a greater influence on temperatures, the results suggest that dynamical and hydrological variations over the LM exhibit a direct response to external forcing at both long and short timescales that is highly dependent on the particular simulation and model.

2020 ◽  
Author(s):  
Pedro José Roldán-Gómez ◽  
Jesús Fidel González-Rouco ◽  
Camilo Melo-Aguilar ◽  
Jason E. Smerdon

Abstract. Simulations of last millennium (LM) climate show that external forcing had a major contribution to the evolution of temperatures; warmer and colder periods like the Medieval Climate Anomaly (MCA; ca. 950–1250 CE) and the Little Ice Age (LIA; ca. 1450–1850 CE) were critically influenced by changes in solar and volcanic activity. Even if this influence is mainly observed in terms of temperatures, evidence from simulations and reconstructions show that other variables related to atmospheric dynamics and hydroclimate also were influenced by external forcing over some regions. In this work, simulations from the Coupled Model Intercomparison Project Phase 5/Paleoclimate Modelling Intercomparison Project Phase 3 (CMIP5/PMIP3) are analyzed to explore the influence of external forcings on the dynamical and hydrological changes during the LM at different spatial and temporal scales. Principal Component (PC) analysis is used to obtain the modes of variability governing the global evolution of climate and to assess their correlation with the total external forcing at multidecadal to multicentennial timescales. For shorter timescales, a composite analysis is used to address the response to specific events of external forcing like volcanic eruptions. The results show coordinated long-term changes in global circulation patterns, which suggest expansions and contractions of the Hadley Cells and latitudinal displacements of Westerlies in response to external forcing. For hydroclimate, spatial patterns of drier and wetter conditions in areas influenced by the North Atlantic Oscillation (NAO), Northern Annular Mode (NAM) and Southern Annular Mode (SAM) and alterations in the intensity and distribution of monsoons and convergence zones are consistently found. Similarly, a clear short-term response is found in the years following volcanic eruptions. Although external forcing has a larger influence on temperatures, the results suggest that dynamical and hydrological variations over the LM exhibit a direct response to external forcing both at long and short timescales that is highly dependent on the particular simulation and model.


2013 ◽  
Vol 9 (1) ◽  
pp. 393-421 ◽  
Author(s):  
L. Fernández-Donado ◽  
J. F. González-Rouco ◽  
C. C. Raible ◽  
C. M. Ammann ◽  
D. Barriopedro ◽  
...  

Abstract. Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5–PMIP3 (Coupled Model Intercomparison Project Phase 5–Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.


The Holocene ◽  
2019 ◽  
Vol 29 (4) ◽  
pp. 592-605 ◽  
Author(s):  
Xuecheng Zhou ◽  
Dabang Jiang ◽  
Xianmei Lang

Using the numerical experiments undertaken by nine climate models within the framework of the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3), the ensemble simulations with the Community Earth System Model for the last millennium (CESM-LME), and proxy data, we investigate the climate over China during the ‘Little Ice Age’ (LIA; from 1450 to 1850 CE) against the background of the last millennium (from 850 to 1850 CE). The surface air temperature averaged over China generally decreased over time during the last millennium, with several multi-decadal to centennial variations superimposed on the long-term cooling. Relative to the climatology of the last millennium, the annual surface temperature during the LIA decreased over the country, with an average cooling of −0.07°C for the median of the PMIP3 models. Different magnitudes of cooling occurred in all seasons except spring. The cooling over China during the LIA was largely attributed to changes in volcanic eruptions and land use, while the change in orbital parameters played a role on a seasonal scale. The precipitation over China during the LIA decreased for the annual mean and summer and autumn but slightly increased in winter and spring. Model–data comparisons indicate that the models reproduced the colder and drier climate of the LIA reasonably, although there are some differences in certain aspects.


2021 ◽  
Vol 15 (3) ◽  
pp. 1645-1662
Author(s):  
Alan Huston ◽  
Nicholas Siler ◽  
Gerard H. Roe ◽  
Erin Pettit ◽  
Nathan J. Steiger

Abstract. Changes in glacier length reflect the integrated response to local fluctuations in temperature and precipitation resulting from both external forcing (e.g., volcanic eruptions or anthropogenic CO2) and internal climate variability. In order to interpret the climate history reflected in the glacier moraine record, the influence of both sources of climate variability must therefore be considered. Here we study the last millennium of glacier-length variability across the globe using a simple dynamic glacier model, which we force with temperature and precipitation time series from a 13-member ensemble of simulations from a global climate model. The ensemble allows us to quantify the contributions to glacier-length variability from external forcing (given by the ensemble mean) and internal variability (given by the ensemble spread). Within this framework, we find that internal variability is the predominant source of length fluctuations for glaciers with a shorter response time (less than a few decades). However, for glaciers with longer response timescales (more than a few decades) external forcing has a greater influence than internal variability. We further find that external forcing also dominates when the response of glaciers from widely separated regions is averaged. Single-forcing simulations indicate that, for this climate model, most of the forced response over the last millennium, pre-anthropogenic warming, has been driven by global-scale temperature change associated with volcanic aerosols.


2011 ◽  
Vol 7 (1) ◽  
pp. 381-395 ◽  
Author(s):  
C. Junk ◽  
M. Claussen

Abstract. Easter Island, an isolated island in the Southeast Pacific, was settled by the Polynesians probably between 600 and 1200 AD and discovered by the Europeans in 1722 AD. While the Polynesians presumably found a profuse palm woodland on Easter Island, the Europeans faced a landscape dominated by grassland. Scientists have examined potential anthropogenic, biological and climatic induced vegetation changes on Easter Island. Here, we analyze observational climate data for the last decades and climate model results for the period 800–1750 AD to explore potential causes for a climatic-induced vegetation change. A direct influence of the ENSO phenomenon on the climatic parameters of Easter Island could not be found in the model simulations. Furthermore, strong climatic trends from a warm Medieval Period to a Little Ice Age or rapid climatic fluctuations due to large volcanic eruptions were not verifiable for the Easter Island region, although they are detectable in the simulations for many regions world wide. Hence we tentatively conclude that large-scale climate changes in the oceanic region around Easter Island might be too small to explain strong vegetation changes on the island over the last millennium.


2020 ◽  
Author(s):  
Alan Huston ◽  
Nicholas Siler ◽  
Gerard H. Roe ◽  
Erin Pettit ◽  
Nathan J. Steiger

Abstract. Changes in glacier length reflect the integrated response to local fluctuations in temperature and precipitation resulting from both external forcing (e.g., volcanic eruptions or anthropogenic CO2) and internal climate variability. In order to interpret the climate history reflected in the glacier moraine record, therefore, the influence of both sources of climate variability must be considered. Here we study the last millennium of glacier length variability across the globe using a simple dynamic glacier model, which we force with temperature and precipitation time series from a 13-member ensemble of simulations from a global climate model. The ensemble allows us to quantify the contributions to glacier length variability from external forcing (given by the ensemble mean) and internal variability (given by the ensemble spread). Within this framework, we find that internal variability drives most length changes in mountain glaciers that have a response timescale of less than a few decades. However, for glaciers with longer response timescales (more than a few decades) external forcing has a greater influence than internal variability. We further find that external forcing also dominates when the response of glaciers from widely separated regions is averaged. Single-forcing simulations indicate that most of the forced response over the last millennium, pre-anthropogenic warming, has been driven by global-scale temperature change associated with volcanic aerosols.


2020 ◽  
Vol 16 (2) ◽  
pp. 743-756 ◽  
Author(s):  
Christoph Dätwyler ◽  
Martin Grosjean ◽  
Nathan J. Steiger ◽  
Raphael Neukom

Abstract. The climate of the Southern Hemisphere (SH) is strongly influenced by variations in the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM). Because of the limited length of instrumental records in most parts of the SH, very little is known about the relationship between these two key modes of variability over time. Using proxy-based reconstructions and last-millennium climate model simulations, we find that ENSO and SAM indices are mostly negatively correlated over the past millennium. Pseudo-proxy experiments indicate that currently available proxy records are able to reliably capture ENSO–SAM relationships back to at least 1600 CE. Palaeoclimate reconstructions show mostly negative correlations back to about 1400 CE. An ensemble of last-millennium climate model simulations confirms this negative correlation, showing a stable correlation of approximately −0.3. Despite this generally negative relationship we do find intermittent periods of positive ENSO–SAM correlations in individual model simulations and in the palaeoclimate reconstructions. We do not find evidence that these relationship fluctuations are caused by exogenous forcing nor by a consistent climate pattern. However, we do find evidence that strong negative correlations are associated with strong positive (negative) anomalies in the Interdecadal Pacific Oscillation and the Amundsen Sea Low during periods when SAM and ENSO indices are of opposite (equal) sign.


2020 ◽  
Vol 33 (1) ◽  
pp. 115-129 ◽  
Author(s):  
Clemens Spensberger ◽  
Michael J. Reeder ◽  
Thomas Spengler ◽  
Matthew Patterson

AbstractThis article provides a reconciling perspective on the two main, but contradictory, interpretations of the southern annular mode (SAM). SAM was originally thought to characterize meridional shifts in the storm track across the entire hemisphere. This perspective was later questioned, and SAM was interpreted as a statistical artifact depending on the choice of base region for the principal component analysis. Neither perspective, however, fully describes SAM. We show that SAM cannot be interpreted in terms of midlatitude variability, as SAM merely modulates the most poleward part of the cyclone tracks and only marginally influences the distribution of other weather-related features of the storm track (e.g., position of jet axes and Rossby wave breaking). Instead, SAM emerges as the leading pattern of geopotential variability due to strong correlations of sea level pressure around the Antarctic continent. As SAM correlates strongly both with the pan-Antarctic mean temperature and the meridional heat flux through 65°S, we hypothesize that SAM can be interpreted as a measure of the degree of the (de)coupling between Antarctica and the southern midlatitudes. As an alternative way of characterizing southern midlatitude variability, we seek domains in which the leading EOF patterns of both the geopotential and storm-track features yield a dynamically consistent picture. This approach is successful for the South Pacific. Here the leading variability patterns are closely related to the Pacific–South America pattern and point toward an NAO-like variability.


2021 ◽  
Author(s):  
Beatriz Arellano Nava ◽  
Paul R. Halloran ◽  
Chris A. Boulton ◽  
Timothy M. Lenton

<p>The last millennium was characterised by a cooling from the Medieval Warm Period into the Little Ice Age. While strong volcanic eruptions could have triggered the onset of the Little Ice Age by reducing solar irradiance, modelling experiments suggest that it was amplified and maintained by sea ice-ocean feedbacks, including a potential abrupt weakening of the subpolar gyre. The weakening of negative feedbacks that maintain a system in a stable state, prior to an abrupt transition, can be detected as an increase in temporal autocorrelation and variability. Here we use an annually-resolved and absolutely dated shell-derived record from the North Icelandic Shelf that spans the last millennium, to detect such a loss of resilience in the marine environment leading up to the Little Ice Age transition. We find a significant increase in autocorrelation and variance in bivalve growth increments and oxygen isotopes before the transition, providing evidence consistent with loss of stability in the marine environment. This supports the idea that internal feedbacks played an important role in the Little Ice Age onset.</p>


2011 ◽  
Vol 7 (2) ◽  
pp. 579-586 ◽  
Author(s):  
C. Junk ◽  
M. Claussen

Abstract. Rapa Nui, an isolated island in the Southeast Pacific, was settled by the Polynesians most likely around 1200 AD and was discovered by the Europeans in 1722 AD. While the Polynesians presumably found a profuse palm woodland on Rapa Nui, the Europeans faced a landscape dominated by grassland. Scientists have examined potential anthropogenic, biological and climatic induced vegetation changes on Rapa Nui. Here, we analyse observational climate data for the last decades and climate model results for the period 800–1750 AD to explore the potential for a climatic-induced vegetation change. A direct influence of the ENSO phenomenon on the climatic parameters of Rapa Nui could not be found in the model simulations. Furthermore, strong climatic trends from a warm Medieval Period to a Little Ice Age or rapid climatic fluctuations due to large volcanic eruptions were not verifiable for the Rapa Nui region, although they are detectable in the simulations for many regions world wide. Hence, we tentatively conclude that large-scale climate changes in the oceanic region around Rapa Nui might be too small to explain strong vegetation changes on the island over the last millennium.


Sign in / Sign up

Export Citation Format

Share Document