scholarly journals Estimation of gas record alteration in very low-accumulation ice cores

2020 ◽  
Vol 16 (2) ◽  
pp. 503-522
Author(s):  
Kévin Fourteau ◽  
Patricia Martinerie ◽  
Xavier Faïn ◽  
Alexey A. Ekaykin ◽  
Jérôme Chappellaz ◽  
...  

Abstract. We measured the methane mixing ratios of enclosed air in five ice core sections drilled on the East Antarctic Plateau. Our work aims to study two effects that alter the recorded gas concentrations in ice cores: layered gas trapping artifacts and firn smoothing. Layered gas trapping artifacts are due to the heterogeneous nature of polar firn, where some strata might close early and trap abnormally old gases that appear as spurious values during measurements. The smoothing is due to the combined effects of diffusive mixing in the firn and the progressive closure of bubbles at the bottom of the firn. Consequently, the gases trapped in a given ice layer span a distribution of ages. This means that the gas concentration in an ice layer is the average value over a certain period of time, which removes the fast variability from the record. Here, we focus on the study of East Antarctic Plateau ice cores, as these low-accumulation ice cores are particularly affected by both layering and smoothing. We use high-resolution methane data to test a simple trapping model reproducing the layered gas trapping artifacts for different accumulation conditions typical of the East Antarctic Plateau. We also use the high-resolution methane measurements to estimate the gas age distributions of the enclosed air in the five newly measured ice core sections. It appears that for accumulations below 2 cm ice equivalent yr−1 the gas records experience nearly the same degree of smoothing. We therefore propose to use a single gas age distribution to represent the firn smoothing observed in the glacial ice cores of the East Antarctic Plateau. Finally, we used the layered gas trapping model and the estimation of glacial firn smoothing to quantify their potential impacts on a hypothetical 1.5-million-year-old ice core from the East Antarctic Plateau. Our results indicate that layering artifacts are no longer individually resolved in the case of very thinned ice near the bedrock. They nonetheless contribute to slight biases of the measured signal (less than 10 ppbv and 0.5 ppmv in the case of methane using our currently established continuous CH4 analysis and carbon dioxide, respectively). However, these biases are small compared to the dampening experienced by the record due to firn smoothing.

2019 ◽  
Author(s):  
Kévin Fourteau ◽  
Patricia Martinerie ◽  
Xavier Faïn ◽  
Alexey A. Ekaykin ◽  
Jérôme Chappellaz ◽  
...  

Abstract. We measured the methane mixing ratios of enclosed air in five ice core sections drilled on the East Antarctic plateau. Our work aims to study two effects that affect the recorded gas concentrations in ice cores: layered gas trapping artifacts and firn smoothing. Layered gas trapping artifacts are due to the heterogeneous nature of polar firn, where some strata might close early and trap abnormally old gases that appear as spurious values during measurements. The smoothing is due to the combined effects of diffusive mixing in the firn and the progressive closure of bubbles at the bottom of the firn. Consequently, the gases trapped in a given ice layer span a distribution of ages. Concentration measurements thus only measure the average value in the ice layer, which removes the fast variability from the record. We focus on the study of East Antarctic plateau ice cores, as these low accumulation ice cores are particularly affected by both layering and smoothing. Our results suggest that the presence of layering artifacts in deep ice cores is linked with the chemical content of the ice. We use high-resolution methane data to parametrize a simple model reproducing the layered gas trapping artifacts for different accumulation conditions typical of the East Antarctic plateau. We also use the high-resolution methane measurements to estimate the gas age distributions of the enclosed air in the five newly measured ice core sections. It appears that for accumulations below 2 cm ie yr−1(ice equivalent) the gas records experience nearly the same degree of smoothing. We therefore propose to use a single gas age distribution to represent the firn smoothing observed in the glacial ice cores of the East Antarctic plateau. Finally, we used the layered gas trapping model and the estimation of glacial firn smoothing to estimate their potential impacts on a million-and-a-half years old ice core from the East Antarctic plateau. Our results indicate that layering artifacts are no longer individually resolved in the case of very thinned ice near the bedrock. They nonetheless contribute to slight biases of the measured signal (less than 10 ppbv and 0.5 ppmv in the case of methane and carbon dioxide). However, these biases are small compared to the dampening experienced by the record due to firn smoothing.


2021 ◽  
Author(s):  
Xavier Faïn ◽  
Rachael Rhodes ◽  
Philip Place ◽  
Vasilii Petrenko ◽  
Kévin Fourteau ◽  
...  

<p>Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. Obtaining a reliable record of atmospheric CO mixing ratios since pre-industrial times is necessary to evaluate climate-chemistry models in conditions different from today. We present high-resolution measurements of CO mixing ratios from ice cores drilled at five different sites on the Greenland ice sheet which experience a range of snow accumulation rates, mean surface temperatures, and different chemical compositions. An optical-feedback cavity-enhanced absorption spectrometer (OF-CEAS) was coupled to continuous melter systems and operated during four analytical campaigns conducted between 2013 and 2019. The CFA-based CO measurements exhibit excellent external precision (ranging 3.3 - 6.6 ppbv, 1σ), and achieve consistently low blanks (ranging from 4.1±1.2 to 12.6±4.4 ppbv). Good accuracy and absolute calibration of CFA-based CO records enable paleo-atmospheric interpretations. The five CO records all exhibit variability in CO mixing ratios that is too large and rapid to reflect past atmospheric mixing ratio changes. Complementary tests conducted on discrete ice samples demonstrate that such patterns are not related to the analytical process (i.e., production of CO from organics in the ice during melting), but very likely are related to in situ CO production within the ice before analyses. Evaluation of signal resolution and co-investigation of high-resolution records of CO and TOC show that past atmospheric CO concentration can be extracted from the records’ baselines at four sites with accumulation rates higher than 20 cm water equivalent per year (weq yr<sup>-1</sup>). However, such baselines should be taken as upper bounds of past atmospheric CO burden. CO records from four sites are combined to produce a multisite average ice core reconstruction of past atmospheric CO for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE. From 1700 to 1875 CE, this record reveals stable or slightly increasing values remaining in the 100-115 ppbv range. From 1875 to 1957 CE, the record indicates a monotonic increase from 114±4 ppbv to 147±6 ppbv. The ice-core multisite CO record exhibits an excellent overlap with the atmospheric CO record from Greenland firn air which span the 1950-2010 time period. The combined ice-core and firn air CO history, spanning 1700-2010 CE, largely exhibits patterns that are consistent with the recent anthropogenic and biomass burning CO emission inventories. This brand new time series will be compared with the most recent results from Earth System Models involved in the CMIP6-AerChemMIP multi-model exercise.</p>


2015 ◽  
Vol 11 (3) ◽  
pp. 355-367 ◽  
Author(s):  
A. Cauquoin ◽  
A. Landais ◽  
G. M. Raisbeck ◽  
J. Jouzel ◽  
L. Bazin ◽  
...  

Abstract. Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 kyr in Antarctica. Inferring the variations in past accumulation rate in polar regions is essential both for documenting past climate and for ice core chronology. On the East Antarctic Plateau, the accumulation rate is so small that annual layers cannot be identified and accumulation rate is mainly deduced from the water isotopic composition assuming constant temporal relationships between temperature, water isotopic composition and accumulation rate. Such an assumption leads to large uncertainties on the reconstructed past accumulation rate. Here, we use high-resolution beryllium-10 (10Be) as an alternative tool for inferring past accumulation rate for the EPICA Dome C ice core, in East Antarctica. We present a high-resolution 10Be record covering a full climatic cycle over the period 269 to 355 ka from Marine Isotope Stage (MIS) 9 to 10, including a period warmer than pre-industrial (MIS 9.3 optimum). After correcting 10Be for the estimated effect of the palaeomagnetic field, we deduce that the 10Be reconstruction is in reasonably good agreement with EDC3 values for the full cycle except for the period warmer than present. For the latter, the accumulation is up to 13% larger (4.46 cm ie yr−1 instead of 3.95). This result is in agreement with the studies suggesting an underestimation of the deuterium-based accumulation for the optimum of the Holocene (Parrenin et al. 2007a). Using the relationship between accumulation rate and surface temperature from the saturation vapour relationship, the 10Be-based accumulation rate reconstruction suggests that the temperature increase between the MIS 9.3 optimum and present day may be 2.4 K warmer than estimated by the water isotopes reconstruction. We compare these reconstructions to the available model results from CMIP5-PMIP3 for a glacial and an interglacial state, i.e. for the Last Glacial Maximum and pre-industrial climates. While 3 out of 7 models show relatively good agreement with the reconstructions of the accumulation–temperature relationships based on 10Be and water isotopes, the other models either underestimate or overestimate it, resulting in a range of model results much larger than the range of the reconstructions. Indeed, the models can encounter some difficulties in simulating precipitation changes linked with temperature or water isotope content on the East Antarctic Plateau during glacial–interglacial transition and need to be improved in the future.


2017 ◽  
Vol 13 (12) ◽  
pp. 1815-1830 ◽  
Author(s):  
Kévin Fourteau ◽  
Xavier Faïn ◽  
Patricia Martinerie ◽  
Amaëlle Landais ◽  
Alexey A. Ekaykin ◽  
...  

Abstract. We investigate for the first time the loss and alteration of past atmospheric information from air trapping mechanisms under low-accumulation conditions through continuous CH4 (and CO) measurements. Methane concentration changes were measured over the Dansgaard–Oeschger event 17 (DO-17,  ∼  60 000 yr BP) in the Antarctic Vostok 4G-2 ice core. Measurements were performed using continuous-flow analysis combined with laser spectroscopy. The results highlight many anomalous layers at the centimeter scale that are unevenly distributed along the ice core. The anomalous methane mixing ratios differ from those in the immediate surrounding layers by up to 50 ppbv. This phenomenon can be theoretically reproduced by a simple layered trapping model, creating very localized gas age scale inversions. We propose a method for cleaning the record of anomalous values that aims at minimizing the bias in the overall signal. Once the layered-trapping-induced anomalies are removed from the record, DO-17 appears to be smoother than its equivalent record from the high-accumulation WAIS Divide ice core. This is expected due to the slower sinking and densification speeds of firn layers at lower accumulation. However, the degree of smoothing appears surprisingly similar between modern and DO-17 conditions at Vostok. This suggests that glacial records of trace gases from low-accumulation sites in the East Antarctic plateau can provide a better time resolution of past atmospheric composition changes than previously expected. We also developed a numerical method to extract the gas age distributions in ice layers after the removal of the anomalous layers based on comparison with a weakly smoothed record. It is particularly adapted for the conditions of the East Antarctic plateau, as it helps to characterize smoothing for a large range of very low-temperature and low-accumulation conditions.


2021 ◽  
Author(s):  
Xavier Faïn ◽  
Rachael H. Rhodes ◽  
Place Philip ◽  
Vasilii V. Petrenko ◽  
Kévin Fourteau ◽  
...  

Abstract. Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. Obtaining a reliable record of atmospheric CO mixing ratios since pre-industrial times is necessary to evaluate climate-chemistry models in conditions different from today and to constrain past CO sources. We present high-resolution measurements of CO mixing ratios from ice cores drilled at five different sites on the Greenland ice sheet which experience a range of snow accumulation rates, mean surface temperatures, and different chemical compositions. An optical-feedback cavity-enhanced absorption spectrometer (OF-CEAS) was coupled to continuous melter systems and operated during four analytical campaigns conducted between 2013 and 2019. Overall, continuous flow analyses (CFA) of CO were carried out on over 700 m of ice. The CFA-based CO measurements exhibit excellent external precision (ranging 3.3-6.6 ppbv, 1sigma), and achieve consistently low blanks (ranging from 4.1+/-1.2 to 12.6+/-4.4 ppbv), enabling paleo-atmospheric interpretations. However the five CO records all exhibit variability too large and rapid to reflect past atmospheric mixing ratio changes. Complementary tests conducted on discrete ice samples demonstrate that these variations are not artifacts of the analytical method (i.e., production of CO from organics in the ice during melting), but very likely are related to in situ CO production within the ice before analysis. Evaluation of signal resolution and co-investigation of high-resolution records of CO and TOC show that past atmospheric CO variations can be extracted from the records’ baselines at four sites with accumulation rates higher than 20 cm water equivalent per year (weq yr-1). However, such baselines should be taken as upper bounds of past atmospheric CO burden. Baseline CO records from four sites are combined to produce a multisite average ice core reconstruction of past atmospheric CO for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE. From 1700 to 1875 CE, the record reveals stable or slightly increasing values in the 100-115 ppbv range. From 1875 to 1957 CE, the record indicates a monotonic increase from 114+/-4 ppbv to 147+/-6 ppbv. The ice-core multisite CO record exhibits an excellent overlap with the atmospheric CO record from Greenland firn air which spans the 1950-2010 time period. The combined ice-core and firn air CO history, spanning 1700-2010 CE provides useful constraints for future model studies of atmospheric changes since the preindustrial period.


2017 ◽  
Author(s):  
Kévin Fourteau ◽  
Xavier Faïn ◽  
Patricia Martinerie ◽  
Amaëlle Landais ◽  
Alexey A. Ekaykin ◽  
...  

Abstract. We investigate for the first time through continuous measurements the loss and alteration of past atmospheric information from air trapping mechanisms under low accumulation conditions. Methane concentration changes were measured over the Dansgaard-Oeschger event 17 (D0-17, ~ 60,000 yrBP) in the Antarctic Vostok 4G-2 ice core. Measurements were performed using continuous-flow analysis combined with laser spectroscopy. The results highlight many anomalous layers at the centimeter scale, unevenly distributed along the ice core. The anomalous methane mixing ratios differ from those in the immediate surrounding layers by up to 50 ppbv. This phenomenon can be theoretically reproduced by a simple layered trapping model, creating very localized gas age scale inversions. We propose a method for cleaning the record of anomalous values which aims at minimizing the bias in the overall signal. Once the layered-trapping induced anomalies are removed from the record, the DO-17 appears to be smoother than its equivalent record from the high accumulation WAIS Divide ice core. This is expected due to the slower sinking and densification speeds of firn layers at lower accumulation. However and surprisingly, the degree of smoothing appears similar between modern and DO-17 conditions at Vostok. This suggests that glacial records of trace gases from low accumulation sites in the East Antarctic plateau can provide a better time resolution of past atmospheric composition changes than usually expected. We also developed a method to extract the gas age distributions in ice layers that can be applied even for sites without firn-air measurements. It is particularly adapted for the conditions of the East Antarctic plateau, as it helps to characterize smoothing for a large range of very low temperature and accumulation conditions.


2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


2020 ◽  
Vol 117 (42) ◽  
pp. 26061-26068 ◽  
Author(s):  
Victoria C. Smith ◽  
Antonio Costa ◽  
Gerardo Aguirre-Díaz ◽  
Dario Pedrazzi ◽  
Andrea Scifo ◽  
...  

The Tierra Blanca Joven (TBJ) eruption from Ilopango volcano deposited thick ash over much of El Salvador when it was inhabited by the Maya, and rendered all areas within at least 80 km of the volcano uninhabitable for years to decades after the eruption. Nonetheless, the more widespread environmental and climatic impacts of this large eruption are not well known because the eruption magnitude and date are not well constrained. In this multifaceted study we have resolved the date of the eruption to 431 ± 2 CE by identifying the ash layer in a well-dated, high-resolution Greenland ice-core record that is >7,000 km from Ilopango; and calculated that between 37 and 82 km3of magma was dispersed from an eruption coignimbrite column that rose to ∼45 km by modeling the deposit thickness using state-of-the-art tephra dispersal methods. Sulfate records from an array of ice cores suggest stratospheric injection of 14 ± 2 Tg S associated with the TBJ eruption, exceeding those of the historic eruption of Pinatubo in 1991. Based on these estimates it is likely that the TBJ eruption produced a cooling of around 0.5 °C for a few years after the eruption. The modeled dispersal and higher sulfate concentrations recorded in Antarctic ice cores imply that the cooling would have been more pronounced in the Southern Hemisphere. The new date confirms the eruption occurred within the Early Classic phase when Maya expanded across Central America.


2019 ◽  
Vol 13 (6) ◽  
pp. 1743-1752 ◽  
Author(s):  
Shugui Hou ◽  
Wangbin Zhang ◽  
Hongxi Pang ◽  
Shuang-Ye Wu ◽  
Theo M. Jenk ◽  
...  

Abstract. Ice cores from the Tibetan Plateau (TP) are widely used for reconstructing past climatic and environmental conditions that extend beyond the instrumental period. However, challenges in dating and interpreting ice core records often lead to inconsistent results. The Guliya ice core drilled from the northwestern TP suggested a cooling trend during the mid-Holocene based on its decreasing δ18O values, which is not observed in other Tibetan ice cores. Here we present a new high-resolution δ18O record of the Chongce ice cores drilled to bedrock ∼30 km away from the Guliya ice cap. Our record shows a warming trend during the mid-Holocene. Based on our results as well as previously published ice core data, we suggest that the apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.


2013 ◽  
Vol 9 (1) ◽  
pp. 289-306 ◽  
Author(s):  
G. R. van der Werf ◽  
W. Peters ◽  
T. T. van Leeuwen ◽  
L. Giglio

Abstract. Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; satellite data indicates that the majority of savannas have not burned in the past 10 yr, even in Africa, which is considered "the burning continent". Although we have not considered increased charcoal burning or changes in OH concentrations as potential causes for the elevated CO concentrations found at SPO, it is unlikely they can explain the large increase found in the CO concentrations in ice core data. Confirmation of the CO ice core data would therefore call for radical new thinking about causes of variable global fire rates over recent centuries.


Sign in / Sign up

Export Citation Format

Share Document