scholarly journals Regional and global climate for the mid-Pliocene using CCSM4 and PlioMIP2 boundary conditions

2017 ◽  
Author(s):  
Deepak Chandan ◽  
W. Richard Peltier

Abstract. The Pliocene Model Intercomparison Project, Phase 2 (PlioMIP2) is an international collaboration to simulate the climate of the mid-Pliocene interglacial, marine isotope stage KM5c (3.205 Mya), using a wide selection of climate models with the objective of understanding the nature of the warming that is known to have occurred during the broader mid-Pliocene warm period. PlioMIP2 builds upon the successes of PlioMIP by shifting focus onto a specific interglacial and by using a revised set of geographic and orbital boundary conditions. In this paper, we present the details of the mid-Pliocene simulations that we have performed with the Community Climate System Model version 4 (CCSM4), and the enhanced variant of the PlioMIP2 boundary conditions, and discuss the simulated climatology through comparisons to our control simulations, and to proxy reconstructions of the climate of the mid-Pliocene. With the new boundary conditions, the CCSM4 model simulates a mid-Pliocene which is more than twice as warm as that with the boundary conditions used for PlioMIP Phase 1. The warming is more enhanced near the high-latitudes which is where most of the changes to the boundary conditions have been made. The elevated warming in the high-latitudes leads to a better match of the simulated climatology to proxy based reconstructions than what was possible with the previous version of the boundary conditions.

2017 ◽  
Vol 13 (7) ◽  
pp. 919-942 ◽  
Author(s):  
Deepak Chandan ◽  
W. Richard Peltier

Abstract. The Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) is an international collaboration to simulate the climate of the mid-Pliocene interglacial, corresponding to marine isotope stage KM5c (3.205 Mya), using a wide selection of climate models with the objective of understanding the nature of the warming that is known to have occurred during the broader mid-Pliocene warm period. PlioMIP2 builds on the successes of PlioMIP by shifting the focus to a specific interglacial and using a revised set of geographic and orbital boundary conditions. In this paper, we present the details of the mid-Pliocene simulations that we have performed with a slightly modified version of the Community Climate System Model version 4 (CCSM4) and the enhanced variant of the PlioMIP2 boundary conditions. We discuss the simulated climatology through comparisons to our control simulations and to proxy reconstructions of the mid-Pliocene climate. With the new boundary conditions, the University of Toronto version of the CCSM4 model simulates a mid-Pliocene that is more than twice as warm as that with the boundary conditions used for PlioMIP Phase 1. The warming is more enhanced near the high latitudes, which is where most of the changes to the PlioMIP2 boundary conditions have been made. The elevated warming in the high latitudes leads to a better match between the simulated climatology and proxy-based reconstructions than possible with the previous version of the boundary conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Jacob Agyekum ◽  
Thompson Annor ◽  
Benjamin Lamptey ◽  
Emmannuel Quansah ◽  
Richard Yao Kuma Agyeman

A selected number of global climate models (GCMs) from the fifth Coupled Model Intercomparison Project (CMIP5) were evaluated over the Volta Basin for precipitation. Biases in models were computed by taking the differences between the averages over the period (1950–2004) of the models and the observation, normalized by the average of the observed for the annual and seasonal timescales. The Community Earth System Model, version 1-Biogeochemistry (CESM1-BGC), the Community Climate System Model Version 4 (CCSM4), the Max Planck Institute Earth System Model, Medium Range (MPI-ESM-MR), the Norwegian Earth System Model (NorESM1-M), and the multimodel ensemble mean were able to simulate the observed climatological mean of the annual total precipitation well (average biases of 1.9% to 7.5%) and hence were selected for the seasonal and monthly timescales. Overall, all the models (CESM1-BGC, CCSM4, MPI-ESM-MR, and NorESM1-M) scored relatively low for correlation (<0.5) but simulated the observed temporal variability differently ranging from 1.0 to 3.0 for the seasonal total. For the annual cycle of the monthly total, the CESM1-BGC, the MPI-ESM-MR, and the NorESM1-M were able to simulate the peak of the observed rainy season well in the Soudano-Sahel, the Sahel, and the entire basin, respectively, while all the models had difficulty in simulating the bimodal pattern of the Guinea Coast. The ensemble mean shows high performance compared to the individual models in various timescales.


2012 ◽  
Vol 25 (7) ◽  
pp. 2456-2470 ◽  
Author(s):  
Koichi Sakaguchi ◽  
Xubin Zeng ◽  
Michael A. Brunke

Abstract Motivated by increasing interests in regional- and decadal-scale climate predictions, this study systematically analyzed the spatial- and temporal-scale dependence of the prediction skill of global climate models in surface air temperature (SAT) change in the twentieth century. The linear trends of annual mean SAT over moving time windows (running linear trends) from two observational datasets and simulations by three global climate models [Community Climate System Model, version 3.0 (CCSM3.0), Climate Model, version 2.0 (CM2.0), and Model E-H] that participated in CMIP3 are compared over several temporal (10-, 20-, 30-, 40-, and 50-yr trends) and spatial (5° × 5°, 10° × 10°, 15° × 15°, 20° × 20°, 30° × 30°, 30° latitudinal bands, hemispheric, and global) scales. The distribution of root-mean-square error is improved with increasing spatial and temporal scales, approaching the observational uncertainty range at the largest scales. Linear correlation shows a similar tendency, but the limited observational length does not provide statistical significance over the longer temporal scales. The comparison of RMSE to climatology and a Monte Carlo test using preindustrial control simulations suggest that the multimodel ensemble mean is able to reproduce robust climate signals at 30° zonal mean or larger spatial scales, while correlation requires hemispherical or global mean for the twentieth-century simulations. Persistent lower performance is observed over the northern high latitudes and the North Atlantic southeast of Greenland. Although several caveats exist for the metrics used in this study, the analyses across scales and/or over running time windows can be taken as one of the approaches for climate system model evaluations.


2018 ◽  
Vol 11 (4) ◽  
pp. 1607-1626 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice sheet expansion and global cooling during the interval ∼ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry, and vegetation. Additionally, Antarctic ice volume and geometry, sea level, and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The MMCO and MMG boundary conditions have been successfully applied to the Community Climate System Model version 3 (CCSM3) to provide evidence of their suitability for global climate modeling. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2010 ◽  
Vol 3 (1) ◽  
pp. 227-242 ◽  
Author(s):  
A. M. Haywood ◽  
H. J. Dowsett ◽  
B. Otto-Bliesner ◽  
M. A. Chandler ◽  
A. M. Dolan ◽  
...  

Abstract. In 2008 the temporal focus of the Palaeoclimate Modelling Intercomparison Project was expanded to include a model intercomparison for the mid-Pliocene warm period (3.29–2.97 million years ago). This project is referred to as PlioMIP (Pliocene Model Intercomparison Project). Two experiments have been agreed upon and comprise phase 1 of PlioMIP. The first (Experiment 1) will be performed with atmosphere-only climate models. The second (Experiment 2) will utilise fully coupled ocean-atmosphere climate models. The aim of this paper is to provide a detailed model intercomparison project description which documents the experimental design in a more detailed way than has previously been done in the literature. Specifically, this paper describes the experimental design and boundary conditions that will be utilised for Experiment 1 of PlioMIP.


2011 ◽  
Vol 4 (1) ◽  
pp. 445-456
Author(s):  
A. M. Haywood ◽  
H. J. Dowsett ◽  
M. M. Robinson ◽  
D. K. Stoll ◽  
A. M. Dolan ◽  
...  

Abstract. The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (~3.3 to 3.0 million yr ago). This project is referred to as PlioMIP (Pliocene Model Intercomparison Project). Two experiments have been agreed and together compose phase 1 of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) is utilising fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this short paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


2017 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice-sheet expansion and global cooling during the interval ~ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry and vegetation. Additionally, Antarctic ice volume and geometry, sea-level and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2011 ◽  
Vol 4 (3) ◽  
pp. 571-577 ◽  
Author(s):  
A. M. Haywood ◽  
H. J. Dowsett ◽  
M. M. Robinson ◽  
D. K. Stoll ◽  
A. M. Dolan ◽  
...  

Abstract. The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.


Sign in / Sign up

Export Citation Format

Share Document