scholarly journals Response of <i>Pinus sylvestris</i> var. <i>mongolica</i> to water change and the reconstruction of drought history for the past 260 years in northeast China

2018 ◽  
Author(s):  
Liangjun Zhu ◽  
Qichao Yao ◽  
David J. Cooper ◽  
Shijie Han ◽  
Xiaochun Wang

Abstract. We present a 260-year annual PDSI reconstruction based on a regional tree-ring width chronology of Scots pine (Pinus sylvestris var. mongolica) from four sample sites in the Daxing’an Mountains, northeast China. The model explained 38.2 % of the variance of annual PDSI during the calibration period from 1911 to 2010. Compared with local historical documents, nearby forest fire history data and hydroclimate reconstructions, our reconstruction is accurate and representative, and recorded the same dry years/periods. The drought of 1920s–1930s was more severe in the Daxing’an Mountains than in surrounding areas. A moisture increase caused by a recent rapid warming (warm-wet pattern) was identified for the Daxing’an Mountains, while a warm-dry pattern was found for the East Mongolian Plateaus (mild drier) and their transition zones: the east Mongolian Plateaus (severe drier). Overall, the dry/wet variability of the Daxing’an Mountains and its relationship with the surrounding areas might be driven by Pacific and Atlantic Ocean oscillations (e.g., ENSO, PDO, AMO, NAO and SNAO) that influence the Asian monsoon, and in turn the local temperature and precipitation that influences regional drought. However, the Monsoon Asia Drought Atlas of "Cook" might inaccurately portray dry/wet variations in the Daxing’an Mountains.

2018 ◽  
Vol 14 (8) ◽  
pp. 1213-1228 ◽  
Author(s):  
Liangjun Zhu ◽  
Qichao Yao ◽  
David J. Cooper ◽  
Shijie Han ◽  
Xiaochun Wang

Abstract. We present a 260-year annual Palmer drought severity index (PDSI) reconstruction based on a tree-ring width chronology of Scots pine (Pinus sylvestris var. mongolica) from four sample sites in the central Daxing'an Mountains, northeast China. The reconstruction equation explained 38.2 % of the variance of annual PDSI in the calibration period from 1911 to 2010. Our reconstruction confirmed the local historical documents and other nearby hydroclimate reconstructions. Drought in the 1920s–1930s was more severe in the Daxing'an Mountains than in the surrounding areas. A slight moisture increase was identified in the study area, while a warm–dry pattern was found in the west-central Mongolian Plateau (mildly drier) and its transition zones: the west-central Mongolian Plateau (severely drier). Overall, the variation of drought in the Daxing'an Mountains and its relationship with surrounding areas may be affected by the Pacific or Atlantic oscillations (e.g., ENSO, PDO, AMO, NAO and SNAO), which can affect the Asian monsoon, change the local temperature and precipitation, and lead to drought.


Trees ◽  
2021 ◽  
Author(s):  
Anastasia Christopoulou ◽  
Nikolaos M. Fyllas ◽  
Barbara Gmińska-Nowak ◽  
Yasemin Özarslan ◽  
Margarita Arianoutsou ◽  
...  

Abstract Key message Long Bosnian pine chronologies from different mountains are shaped by different climatic parameters and can help identify past drought events and reconstruct landscape histories. Abstract We developed a 735-year-long Pinus heldreichii chronology from the southern distribution limit of the species, expanding the available database of long Bosnian pine chronologies. Tree-ring growth was mainly positively correlated with growing degree days (GDD: r1950–2018 = 0.476) while higher temperatures during both winter and growing season also enhanced growth (TWT: r1950–2018 = 0.361 and TGS: 0.289, respectively). Annual precipitation, during both calendar and water years, had a negative but weaker impact on annual tree growth. The newly developed chronology correlates well with chronologies developed from the neighboring mountains. The years with ring width index (RWI) lower than the average were found to correspond to cool years with dry summers. Still, the newly developed chronology was able to capture severe drought events, such as those in 1660, 1687, and 1725. Several old living trees had internal scars presumably caused by fires. Therefore, old mature trees could be used for fire history reconstruction in addition to climate reconstruction. Although the presence of lightning scars indicates an important natural agent of fire ignition, human activities associated with animal grazing could also be an underlying reason for fires in the region.


2018 ◽  
Vol 64 (No. 3) ◽  
pp. 139-147 ◽  
Author(s):  
Khaleghi Mohammad Reza

The present study tends to describe the survey of climatic changes in the case of the Bojnourd region of North Khorasan, Iran. Climate change due to a fragile ecosystem in semi-arid and arid regions such as Iran is one of the most challenging climatological and hydrological problems. Dendrochronology, which uses tree rings to their exact year of formation to analyse temporal and spatial patterns of processes in the physical and cultural sciences, can be used to evaluate the effects of climate change. In this study, the effects of climate change were simulated using dendrochronology (tree rings) and an artificial neural network (ANN) for the period from 1800 to 2015. The present study was executed using the Quercus castaneifolia C.A. Meyer. Tree-ring width, temperature, and precipitation were the input parameters for the study, and climate change parameters were the outputs. After the training process, the model was verified. The verified network and tree rings were used to simulate climatic parameter changes during the past times. The results showed that the integration of dendroclimatology and an ANN renders a high degree of accuracy and efficiency in the simulation of climate change. The results showed that in the last two centuries, the climate of the study area changed from semiarid to arid, and its annual precipitation decreased significantly.


2006 ◽  
Vol 2 (6) ◽  
pp. 1051-1073 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D’Arrigo

Abstract. Tree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1–3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records.


2020 ◽  
Author(s):  
Mingqi Li ◽  
Guofu Deng ◽  
Xuemei Shao ◽  
Zhi-Yong Yin

Abstract. Inter-annual variations in precipitation play important roles in management of forest ecosystems and agricultural production in Northeast China. This study presents a 270-year precipitation reconstruction of winter to early growing season for the central Lesser Khingan Mountains, Northeast China based on tree-ring width data from 99 tree-ring cores of Pinus koraiensis Sieb. et Zucc. from two sampling sites near Yichun. The reconstruction explained 43.9 % of the variance in precipitation from the previous October to current June during the calibration period 1956–2017. At the decadal scale, we identified four dry periods that occurred during AD 1748–1759, 1774–1786, 1881–1886 and 1918–1924, and four wet periods occurring during AD 1790–1795, 1818–1824, 1852–1859 and 2008–2017, and the period AD 2008–2017 was the wettest in the past 270 years. Power spectral analysis and wavelet analysis revealed cyclic patterns on the inter-annual (2–3 years) and inter-decadal (~11 and ~32–60 years) timescales in the reconstructed series, which may be associated with the large-scale circulation patterns such as the Arctic Oscillation and North Atlantic Oscillation through their impacts on the Asian polar vortex intensity, as well as the solar activity.


Author(s):  
Tiziana Pedrotta ◽  
Erika Gobet ◽  
Christoph Schwörer ◽  
Giorgia Beffa ◽  
Christoph Butz ◽  
...  

AbstractKnowledge about the vegetation history of Sardinia, the second largest island of the Mediterranean, is scanty. Here, we present a new sedimentary record covering the past ~ 8,000 years from Lago di Baratz, north-west Sardinia. Vegetation and fire history are reconstructed by pollen, spores, macrofossils and charcoal analyses and environmental dynamics by high-resolution element geochemistry together with pigment analyses. During the period 8,100–7,500 cal bp, when seasonality was high and fire and erosion were frequent, Erica arborea and E. scoparia woodlands dominated the coastal landscape. Subsequently, between 7,500 and 5,500 cal bp, seasonality gradually declined and thermo-mediterranean woodlands with Pistacia and Quercus ilex partially replaced Erica communities under diminished incidence of fire. After 5,500 cal bp, evergreen oak forests expanded markedly, erosion declined and lake levels increased, likely in response to increasing (summer) moisture availability. Increased anthropogenic fire disturbance triggered shrubland expansions (e.g. Tamarix and Pistacia) around 5,000–4,500 cal bp. Subsequently around 4,000–3,500 cal bp evergreen oak-olive forests expanded massively when fire activity declined and lake productivity and anoxia reached Holocene maxima. Land-use activities during the past 4,000 years (since the Bronze Age) gradually disrupted coastal forests, but relict stands persisted under rather stable environmental conditions until ca. 200 cal bp, when agricultural activities intensified and Pinus and Eucalyptus were planted to stabilize the sand dunes. Pervasive prehistoric land-use activities since at least the Bronze Age Nuraghi period included the cultivation of Prunus, Olea europaea and Juglans regia after 3,500–3,300 cal bp, and Quercus suber after 2,500 cal bp. We conclude that restoring less flammable native Q. ilex and O. europaea forest communities would markedly reduce fire risk and erodibility compared to recent forest plantations with flammable non-native trees (e.g. Pinus, Eucalyptus) and xerophytic shrubland (e.g. Cistus, Erica).


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Xiaoying Xue ◽  
Guoyu Ren ◽  
Xiubao Sun ◽  
Panfeng Zhang ◽  
Yuyu Ren ◽  
...  

AbstractThe understanding of centennial trends of extreme temperature has been impeded due to the lack of early-year observations. In this paper, we collect and digitize the daily temperature data set of Northeast China Yingkou meteorological station since 1904. After quality control and homogenization, we analyze the changes of mean and extreme temperature in the past 114 years. The results show that mean temperature (Tmean), maximum temperature (Tmax), and minimum temperature (Tmin) all have increasing trends during 1904–2017. The increase of Tmin is the most obvious with the rate of 0.34 °C/decade. The most significant warming occurs in spring and winter with the rate of Tmean reaching 0.32 °C/decade and 0.31 °C/decade, respectively. Most of the extreme temperature indices as defined using absolute and relative thresholds of Tmax and Tmin also show significant changes, with cold events witnessing a more significant downward trend. The change is similar to that reported for global land and China for the past six decades. It is also found that the extreme highest temperature (1958) and lowest temperature (1920) records all occurred in the first half of the whole period, and the change of extreme temperature indices before 1950 is different from that of the recent decades, in particular for diurnal temperature range (DTR), which shows an opposite trend in the two time periods.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 752
Author(s):  
Liu ◽  
Bao ◽  
Bao

Chinese pine (Pinus tabulaeformis Carr.) plays an important role in maintaining ecosystem health and stability in western Liaoning Province and the southern Horqin sand land, Northeast China, with benefits including sand fixation and soil erosion. In the context of climate change, developing a better understanding of the relationship between climate factors and growth rates of this species will be extremely valuable in guiding management activities and meeting regional conservation objectives. Here, the results based on two groups of tree-ring samples show that the radial growth of Chinese pine is controlled primarily by water conditions. The longer chronology had the highest correlation coefficient with the January–September mean self-calibrating Palmer Drought Severity Index (scPDSI); therefore, drought variability was reconstructed for the period 1859–2014. Statistical analysis showed that our model explained 41.9% of the variance in radial growth during the 1951–2014 calibration period. Extreme dry and wet events, defined as the criteria of one standard deviation less or greater than the mean value, accounted for 19.9% and 18.6% of the 156-year climate record, respectively. During the past century, the regional hydroclimate experienced significant long-term fluctuations. The dry periods occurred from the early-1900s–1930s and 1980s–2000s, and the wet periods occurred from the 1940s–1970s. The drought reconstruction was consistent with the decreasing trend of the East Asian summer monsoon since the late 1970s. The reconstructed temporal patterns in hydroclimate in western Liaoning were closely related to the large-scale climate drivers in the North Pacific and the tropical equatorial Pacific. The teleconnections were confirmed by spatial correlations between the reconstructed sequence and sea surface temperature (SST) in the North Pacific, as well as the correlations with the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) indices. Aerosols played an important role in affecting drought variations over the past several decades. Moisture stress caused by global warming and interdecadal changes in the PDO will have long-term effects on the growth of pines in the study area in the future.


Sign in / Sign up

Export Citation Format

Share Document