scholarly journals El Niño-like conditions and seasonal aridity in the Indo-Pacific Warm Pool during the Younger Dryas

2021 ◽  
Author(s):  
Petter Lars Hällberg ◽  
Frederik Schenk ◽  
Kweku Afrifa Yamoah ◽  
Xueyuen Kuang ◽  
Rienk Hajo Smittenberg

Abstract. Island South-East Asia (ISEA) is a highly humid region and hosts the world’s largest tropical peat deposits. Most of this peat accumulated relatively recently during the Holocene, suggesting a generally drier and/or more seasonal climate during earlier times. Although there is evidence for savanna expansion and drier conditions during the Last Glacial Maximum (LGM, 21 ka BP), the mechanisms behind hydroclimatic changes during the ensuing deglacial period has received much less attention and are poorly understood. Here we use CESM1 climate model simulations to investigate the key drivers behind ISEA climate at the very end of the last deglacial period, at 12 ka BP. A transient simulation (TRACE) is used to track the climate seasonality and orbitally driven change over time during the deglaciation into the Holocene. In agreement with proxy-evidence, CESM1 simulates overall drier conditions at 12 ka BP. More importantly, ISEA experienced extreme seasonal aridity, in stark contrast to the ever-wet modern climate. We identify that the simulated drying and enhanced seasonality at 12 ka BP is mainly the result of a combination of three factors: 1) large orbital insolation difference between summer and winter in contrast to the LGM and the present day; 2) a stronger winter monsoon caused by a larger interhemispheric thermal gradient in boreal winters; and 3) a major reorganization of the Walker Circulation with an inverted land-sea circulation with a complete breakdown of deep convection over ISEA. The altered atmospheric circulation mean state during winters led to conditions resembling extreme El Niño events in the modern climate and a dissolution of the Inter-Tropical Convergence Zone (ITCZ) over the region. From these results we infer that terrestrial cooling of ISEA and at least a seasonal reversal of land-sea circulation likely played a major role in delaying tropical peat formation until at least the onset of the Holocene period.

2020 ◽  
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann ◽  
Malte F. Stuecker

Abstract. The El Niño-Southern Oscillation (ENSO) influences the most extensive tropospheric circulation cells on our planet, known as Hadley and Walker circulations. Previous studies have largely focused on the effect of ENSO on the strength of these cells. However, what has remained uncertain is whether interannual sea surface temperature anomalies can also cause synchronized spatial shifts of these circulations. Here, by examining the spatio-temporal relationship between Hadley and Walker cells in observations and climate model experiments, we demonstrate that the seasonally evolving warm pool SST anomalies in the decay phase of an El Niño event generate a meridionally asymmetric Walker circulation response, which couples the zonal and meridional atmospheric overturning circulations. This process, which can be characterized as a phase-synchronized spatial shift in Walker and Hadley cells, is accompanied by cross-equatorial northwesterly low-level flow that diverges from an area of anomalous drying in the western North Pacific and converges towards a region with anomalous moistening in the southern central Pacific. Our results show that the SST-induced concurrent spatial shifts of the two circulations are climatically relevant as they can further amplify extratropical precipitation variability on interannual timescales.


2021 ◽  
Vol 12 (1) ◽  
pp. 121-132
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann ◽  
Malte F. Stuecker

Abstract. The El Niño–Southern Oscillation (ENSO) influences the most extensive tropospheric circulation cells on our planet, known as Hadley and Walker circulations. Previous studies have largely focused on the effect of ENSO on the strength of these cells. However, what has remained uncertain is whether interannual sea surface temperature anomalies can also cause synchronized spatial shifts of these circulations. Here, by examining the spatiotemporal relationship between Hadley and Walker cells in observations and climate model experiments, we demonstrate that the seasonally evolving warm-pool sea surface temperature (SST) anomalies in the decay phase of an El Niño event generate a meridionally asymmetric Walker circulation response, which couples the zonal and meridional atmospheric overturning circulations. This process, which can be characterized as a phase-synchronized spatial shift in Walker and Hadley cells, is accompanied by cross-equatorial northwesterly low-level flow that diverges from an area of anomalous drying in the western North Pacific and converges towards a region with anomalous moistening in the southern central Pacific. Our results show that the SST-induced concurrent spatial shifts of the two circulations are climatically relevant as they can further amplify extratropical precipitation variability on interannual timescales.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Tanusri Chakraborty ◽  
T. P. Sabin ◽  
Anton Laakso ◽  
...  

AbstractThe Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871–2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jitendra Singh ◽  
Moetasim Ashfaq ◽  
Christopher B. Skinner ◽  
Weston B. Anderson ◽  
Deepti Singh

AbstractSpatially compounding droughts over multiple regions pose amplifying pressures on the global food system, the reinsurance industry, and the global economy. Using observations and climate model simulations, we analyze the influence of various natural Ocean variability modes on the likelihood, extent, and severity of compound droughts across ten regions that have similar precipitation seasonality and cover important breadbaskets and vulnerable populations. Although a majority of compound droughts are associated with El Niños, a positive Indian Ocean Dipole, and cold phases of the Atlantic Niño and Tropical North Atlantic (TNA) can substantially modulate their characteristics. Cold TNA conditions have the largest amplifying effect on El Niño-related compound droughts. While the probability of compound droughts is ~3 times higher during El Niño conditions relative to neutral conditions, it is ~7 times higher when cold TNA and El Niño conditions co-occur. The probability of widespread and severe compound droughts is also amplified by a factor of ~3 and ~2.5 during these co-occurring modes relative to El Niño conditions alone. Our analysis demonstrates that co-occurrences of these modes result in widespread precipitation deficits across the tropics by inducing anomalous subsidence, and reducing lower-level moisture convergence over the study regions. Our results emphasize the need for considering interactions within the larger climate system in characterizing compound drought risks rather than focusing on teleconnections from individual modes. Understanding the physical drivers and characteristics of compound droughts has important implications for predicting their occurrence and characterizing their impacts on interconnected societal systems.


2007 ◽  
Vol 20 (13) ◽  
pp. 2895-2916 ◽  
Author(s):  
Qian Song ◽  
Gabriel A. Vecchi ◽  
Anthony J. Rosati

Abstract The interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between positive IODZM and El Niño events, through a composite analysis. The IODZM events in the CGCM grow through feedbacks between heat-content anomalies and SST-related atmospheric anomalies, particularly in the eastern tropical Indian Ocean. The composite IODZM events that co-occur with El Niño have stronger anomalies and a sharper east–west SSTA contrast than those that occur without El Niño. IODZM events, whether or not they occur with El Niño, are preceded by distinctive Indo-Pacific warm pool anomaly patterns in boreal spring: in the central Indian Ocean easterly surface winds, and in the western equatorial Pacific an eastward shift of deep convection, westerly surface winds, and warm sea surface temperature. However, delayed onsets of the anomaly patterns (e.g., boreal summer) are often not followed by IODZM events. The same anomaly patterns often precede El Niño, suggesting that the warm pool conditions favorable for both IODZM and El Niño are similar. Given that IODZM events can occur without El Niño, it is proposed that the observed IODZM–El Niño relation arises because the IODZM and El Niño are both large-scale phenomena in which variations of the Indo-Pacific warm pool deep convection plays a central role. Yet each phenomenon has its own dynamics and life cycle, allowing each to develop without the other. The CGCM integration also shows substantial decadal modulation of the occurrence of IODZM events, which is found to be not in phase with that of El Niño events. There is a weak, though significant, negative correlation between the two. Moreover, the statistical relationship between the IODZM and El Niño displays strong decadal variability.


2004 ◽  
Vol 17 (23) ◽  
pp. 4590-4602 ◽  
Author(s):  
Johnny C. L. Chan ◽  
Kin Sik Liu

Abstract Based on results from climate model simulations, many researchers have suggested that because of global warming, the sea surface temperature (SST) will likely increase, which will then lead to an increase in the intensity of tropical cyclones (TCs). This paper reports results of a study of the relationship between SST and observed typhoon activity (which is used as a proxy for the intensity of TCs averaged over a season) over the western North Pacific (WNP) for the past 40 yr. The average typhoon activity over a season is found to have no significant relationship with SST in the WNP but increases when the SST over the equatorial eastern Pacific Ocean is above normal. The mean annual typhoon activity is generally higher (lower) during an El Niño (La Niña) year. Such interannual variations of typhoon activity appear to be largely constrained by the large-scale atmospheric factors that are closely related to the El Niño–Southern Oscillation (ENSO) phenomenon. These large-scale dynamic and thermodynamic factors include low-level relative vorticity, vertical wind shear, and moist static energy. Such results are shown to be physically consistent with one another and with those from previous studies on the interannual variations of TC activity. The results emphasize the danger of drawing conclusions about future TC intensity based on current climate model simulations that are not designed to make such predictions.


2010 ◽  
Vol 67 (8) ◽  
pp. 2649-2657 ◽  
Author(s):  
Ka-Kit Tung ◽  
Jiansong Zhou

Abstract Using a modified method of multiple linear regression on instrumented sea surface temperature (SST) in the two longest historical datasets [the Extended Reconstructed SST dataset (ERSST) and the Met Office Hadley Centre Sea Ice and SST dataset (HadISST)], it is found that the response to increased greenhouse forcing is a warm SST in the mid- to eastern Pacific Ocean in the equatorial region in the annual or seasonal mean. The warming is robustly statistically significant at the 95% confidence level. Consistent with this, the smaller radiative heating from solar forcing produces a weak warming also in this region, and the spatial pattern of the response is neither La Niña–like nor El Niño–like. It is noted that previous reports of a cold-tongue (La Niña–like) response to increased greenhouse or to solar-cycle heating were likely caused by contaminations due to the dominant mode of natural response in the equatorial Pacific. The present result has implications on whether the Walker circulation is weakened or strengthened in a warmer climate and on coupled atmosphere–ocean climate model validation.


2013 ◽  
Vol 13 (4) ◽  
pp. 10547-10560
Author(s):  
V. O. John ◽  
D. E. Parker ◽  
S. A. Buehler ◽  
J. Price ◽  
R. W. Saunders

Abstract. We use multiple observations and climate model simulations to study upper tropospheric humidity (UTH) in tropical descent regions. A satellite simulator is used to generate UTH from model fields to ensure a like-to-like comparison. We have shown that HadGEM2 is generally able to reproduce the patterns and magnitude of UTH in these regions. In both models and observations, the major mode of UTH variability in these regions is associated with El Nino and Southern Oscillation (ENSO); a negative UTH anomaly is seen during El Nino years. There is no significant trend in UTH in these regions, where even a small negative trend would lead to an important reduction of the positive water vapour feedback on global warming.


2016 ◽  
Vol 29 (21) ◽  
pp. 7755-7771 ◽  
Author(s):  
Dingzhu Hu ◽  
Wenshou Tian ◽  
Zhaoyong Guan ◽  
Yipeng Guo ◽  
Sandip Dhomse

Abstract The zonal structure of trends in the tropical tropopause layer during 1979–2014 is investigated by using reanalysis datasets and chemistry–climate model simulations. The analysis herein reveals that the tropical cold-point tropopause temperature (CPTT) trends during 1979–2014 are zonally asymmetric; that is, over the tropical central and eastern Pacific (CEP; 20°S–20°N, 160°E–100°W), the CPTT shows an increasing trend of 0.22 K decade−1, whereas over the rest of the tropical regions (non-CEP regions) the CPTT shows a decreasing trend of −0.08 K decade−1. Model simulations suggest that this zonal asymmetry in the tropical CPTT trends can be partly attributed to Walker circulation (WC) changes induced by zonally asymmetric changes of the sea surface temperatures (SSTs). The increasing (decreasing) SSTs over the western Pacific (CEP) result in a larger zonal gradient in sea level pressure over the tropical Pacific and intensified surface easterlies. The increased pressure gradient leads to enhanced convection over the Indo-Pacific warm pool and weakened convection over the CEP, facilitating a stronger WC. The downward branch of the intensified WC induces a dynamical warming over the CEP and the upward branch of the intensified WC induces a dynamical cooling over the non-CEP regions below 150 hPa. The significant warming in the upper troposphere and lower stratosphere (UTLS) caused by the WC descending and wave activity changes in the UTLS over the CEP shifts the cold-point tropopause height to a higher level, while the radiative effects of greenhouse gases, ozone, and water vapor changes in the UTLS make less important contributions to the trend of the tropical CPTT than SST changes.


Sign in / Sign up

Export Citation Format

Share Document