scholarly journals The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)

2013 ◽  
Vol 9 (6) ◽  
pp. 2687-2702 ◽  
Author(s):  
N. Hamon ◽  
P. Sepulchre ◽  
V. Lefebvre ◽  
G. Ramstein

Abstract. The Middle Miocene Climatic Transition (MMCT, approximately 14 Ma) is a key period in Cenozoic cooling and cryospheric expansion. Despite being well documented in isotopic record, the causes of the MMCT are still a matter of debate. Among various hypotheses, some authors suggested that it was due the final closure of the eastern Tethys seaway and subsequent oceanic circulation reorganisation. The aim of the present study is to quantify the impact of varying Tethys seaway depths on middle Miocene ocean and climate, in order to better understand its role in the MMCT. We present four sensitivity experiments with a fully coupled ocean-atmosphere general circulation model. Our results indicate the presence of a warm and salty water source in the northern Indian Ocean when the eastern Tethys is deep open (4000 or 1000 m), which corresponds to the Tethyan Indian Saline Water (TISW) described on the basis of isotopic studies. This water source is absent in the experiments with shallow (250 m) and closed Tethys seaway, inducing strong changes in the latitudinal density gradient and ultimately the reinforcement of the Antarctic Circumpolar Current (ACC). Moreover, when the Tethys seaway is shallow or closed, there is a westward water flow in the Gibraltar Strait that strengthens the Atlantic Meridional Overturning Circulation (AMOC) compared to the experiments with deep-open Tethys seaway. Our results therefore suggest that the shoaling and final closure of the eastern Tethys seaway played a major role in the oceanic circulation reorganisation during the middle Miocene. The results presented here provide new constraints on the timing of the Tethys seaway closure and particularly indicate that, prior to 14 Ma, a deep-open Tethys seaway should have allowed the formation of TISW. Moreover, whereas the final closure of this seaway likely played a major role in the reorganisation of oceanic circulation, we suggest that it was not the main driver of the global cooling and Antarctica ice-sheet expansion during the MMCT. Here we propose that the initiation of the MMCT was caused by an atmospheric pCO2 drawdown and that the oceanic changes due to the Tethys seaway closure amplified the response of global climate and East Antarctic Ice Sheet.

2013 ◽  
Vol 9 (2) ◽  
pp. 2115-2152
Author(s):  
N. Hamon ◽  
P. Sepulchre ◽  
V. Lefebvre ◽  
G. Ramstein

Abstract. The middle Miocene climatic transition (MMCT, approximately 14 Ma) is a key period in Cenozoic cooling and cryospheric expansion. Despite it is well documented in isotopic record, the causes of the MMCT are still a matter of debate. Among various hypotheses, some authors suggested that it was linked with the final closure of the East-Tethys seaway and subsequent oceanic circulation reorganisation. The aim of the present study is to quantify the impact of varying East-Tethys seaway depths on middle Miocene ocean and climate, in order to better understand its role in the MMCT. We present four sensitivity experiments with a fully coupled ocean-atmosphere generalized circulation model. Our results indicate the presence of a warm and salty water source in the northern Indian Ocean when the East-Tethys is deep-open (4000 or 1000 m), which corresponds to the Tethyan Indian Saline Water (TISW) described on the basis of isotopic studies. This water source is absent in the experiments with shallow (250 m) and closed East-Tethys, inducing strong changes in the latitudinal density gradient and ultimately the reinforcement of the Antarctic Circumpolar Current (ACC). Moreover, when the East-Tethys seaway is shallow or closed, there is a westward water flow in the Gibraltar Strait that strengthens the Atlantic meridional overturning circulation (AMOC) compared to the experiments with deep-open East-Tethys. Our results therefore suggest that the shoaling and final closure of the East-Tethys seaway played a major role in the oceanic circulation reorganisation during the middle Miocene. The results presented here provide new constraints on the timing of the East-Tethys seaway closure, and particularly indicate that, prior to 14 Ma, a deep-open East-Tethys should have allow the formation of TISW. Moreover, whereas the final closure of this seaway likely played a major role in the MMCT, we suggest that it was not the only driver of the global cooling and Antarctica ice sheet growth. Here, we propose that the initiation of the MMCT may have been an atmospheric pCO2 drawdown and that the oceanic Changes due to the East-Tethys seaway closure amplified the response of global climate and East-Antarctic Ice Sheet.


2020 ◽  
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi

<p><span>Paleo reconstructions such as ice cores have revealed that the glacial period experienced frequent climate shifts between warm interstadials and cold stadials. The duration of these climate modes varied during glacial periods, and that both the interstadials and stadials were shorter during mid-glacial compared with early glacial period. Recent studies showed that the duration of the interstdials was controlled by the Antarctic temperature through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, similar relation was not found for the stadials, suggesting that other climate factors (e.g., differences in ice sheet size, greenhouse gases and insolation) might have played a role. In this study, we investigate the role of glacial ice sheets on the duration of stadials. For this purpose, freshwater hosing experiments are conducted with an atmosphere-ocean general circulation model MIROC4m under early-glacial and mid-glacial conditions. Then, a sensitivity experiment is conducted modifying only the configuration of the ice sheets.  The impact of mid-glacial ice sheets on the duration of the stadials is evaluated by comparing the recovery time of the AMOC after the cessation of the freshwater forcing. We find that the expansion of glacial ice sheets during mid-glacial shortens the recovery time of the AMOC. Partially coupled experiments, which switch the surface winds between the two experiments, show that the differences in the surface wind cause the shorter recovery time under mid-glacial ice sheet. The wind shortens the recovery time by increasing the surface salinity and decreasing the sea ice at the deepwater formation region. Thus the results suggest that differences in the surface wind between mid-glacial and early glacial ice sheets play an important role in causing shorter stadials during mid-glacial period.</span></p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takashi Obase ◽  
Ayako Abe-Ouchi ◽  
Fuyuki Saito

AbstractThere were significant differences between the last two deglaciations, particularly in Atlantic Meridional Overturning Circulation (AMOC) and Antarctic warming in the deglaciations and the following interglacials. Here, we present transient simulations of deglaciation using a coupled atmosphere–ocean general circulation model for the last two deglaciations focusing on the impact of ice sheet discharge on climate changes associated with the AMOC in the first part, and the sensitivity studies using a Northern Hemisphere ice sheet model in the second part. We show that a set of abrupt climate changes of the last deglaciation, including Bolling–Allerod warming, the Younger Dryas, and onset of the Holocene were simulated with gradual changes of both ice sheet discharge and radiative forcing. On the other hand, penultimate deglaciation, with the abrupt climate change only at the beginning of the last interglacial was simulated when the ice sheet discharge was greater than in the last deglaciation by a factor of 1.5. The results, together with Northern Hemisphere ice sheet model experiments suggest the importance of the transient climate and AMOC responses to the different orbital forcing conditions of the last two deglaciations, through the mechanisms of mass loss of the Northern Hemisphere ice sheet and meltwater influx to the ocean.


2021 ◽  
Author(s):  
Roland Neofitu ◽  
Chris Mark ◽  
Suzanne O'Connell ◽  
Samuel Kelley ◽  
Delia Rösel ◽  
...  

<p>Antarctic ice-sheet instability is recorded by ice-rafted debris (IRD) in mid- to high-latitude marine sediment, especially throughout climate transitions. The middle Miocene climatic transition (MMCT), 14.2 to 13.8 Ma, which marks the end of a significant warm period during the mid-Miocene, saw a rapid cooling of ca. 6-7 °C in the high-latitude Southern Ocean. This climatic shift was also accompanied by a global δ<sup>18</sup>O excursion of ca. 1‰, indicating a time of global cooling and significant Antarctic ice expansion (Shevenell et al., 2004). The MMCT is recorded by numerous IRD-rich sediment horizons in deep-sea sediment cores around the Antarctic margin, reflecting iceberg calving during times of ice-sheet instability. Resolving the locations of iceberg calving sites by detrital provenance analysis during the MMCT will be an important tool for forecasting effects of anthropogenic climate change.</p><p>Here we present results of a multi-proxy provenance study by using K- and plagioclase feldspar, selected due to their relative abundance in clastic sediment, and tendency to incorporate Rb (Kfs only), Pb, and Sr at analytically useful concentrations, thus enabling source-terrane fingerprinting. While Pb-isotope fingerprinting is an established method for provenance analysis of glaciogenic sediment (Flowerdew et al., 2012), combining in-situ Sr-isotope fingerprinting with <sup>87</sup>Rb/<sup>87</sup>Sr dating is a novel approach. These techniques are applied to deep-sea core ODP113-694, which was recovered from the Weddell Sea; as this is located ca. 750 km from the continental rise, in 4671.3 m of water. This location is ideal, as it acts as a major iceberg graveyard making it a key IRD depocenter (Barker, Kennett et al., 1988). Within the core, several IRD layers were identified and analysed with preliminary depositional ages of 14 to 14.4 Ma.</p><p>We discuss the implications of our results in terms of location of active iceberg calving sites and further consider the viability of our multi-proxy provenance approach to the Antarctic offshore.</p><p>Barker, P.F., Kennett, J.P., et al., 1988, Proc. Init. Repts. (Pt. A): ODP, 113, College Station, TX (Ocean Drilling Program).</p><p>Flowerdew, M.J., et al., 2012, Chemical Geology, v. 292–293, p. 88–102, doi: 10.1016/j.chemgeo.2011.11.006.</p><p>Shevenell, A.E., et al., 2004, Science, v. 305, p. 1766-1770, doi: 10.1126/science.1100061.</p>


2021 ◽  
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Akira Oka ◽  
Takahito Mitsui ◽  
Fuyuki Saito

Abstract. Glacial periods undergo frequent climate shifts between warm interstadials and cold stadials on a millennial time-scale. Recent studies have shown that the duration of these climate modes varies with the background climate; a colder background climate and lower CO2 generally results in a shorter interstadial and a longer stadial through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, the duration of stadials was shorter during the Marine Isotope Stage 3 (MIS3) compared with MIS5, despite the colder climate in MIS3, suggesting potential control from other climate factors on the duration of stadials. In this study, we investigated the role of glacial ice sheets. For this purpose, freshwater hosing experiments were conducted with an atmosphere–ocean general circulation model under MIS5a, MIS3 and MIS3 with MIS5a ice sheet conditions. The impact of ice sheet differences on the duration of the stadials was evaluated by comparing recovery times of the AMOC after freshwater forcing was reduced. Hosing experiments showed a slightly shorter recovery time of the AMOC in MIS3 compared with MIS5a, which was consistent with ice core data. We found that larger glacial ice sheets in MIS3 shortened the recovery time. Sensitivity experiments showed that stronger surface winds over the North Atlantic shortened the recovery time by increasing the surface salinity and decreasing the sea ice amount in the deepwater formation region, which set favourable conditions for oceanic convection. In contrast, we also found that surface cooling by larger ice sheets tended to increase the recovery time of the AMOC by increasing the sea ice thickness over the deepwater formation region. Thus, this study suggests that the larger ice sheet in MIS3 compared with MIS5a could have contributed to the shortening of stadials in MIS3, despite the climate being colder than that of MIS5a, when the effect of surface wind played a larger role.


2020 ◽  
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Akira Oka

Abstract. This study explores the effect of southward expansion of mid-glacial ice sheets on the global climate and the Atlantic meridional overturning circulation (AMOC), as well as the processes by which the ice sheets modify the AMOC. For this purpose, simulations of Marine Isotope Stage (MIS) 3 and 5a are performed with an atmosphere-ocean general circulation model. In the MIS3 and MIS5a simulations, the global average temperature decreases by 5.0 °C and 2.2 °C, respectively, compared with the preindustrial climate simulation. The AMOC weakens by 3 % in MIS3, whereas it is enhanced by 16 % in MIS5a, both of which are consistent with a reconstruction. Sensitivity experiments extracting the effect of the expansion of glacial ice sheets from MIS5a to MIS3 show a global cooling of 1.1 °C, contributing to about 40 % of the total surface cooling from MIS5a to MIS3. These experiments also demonstrate that the ice sheet expansion leads to a surface cooling of 2 °C over the Southern Ocean as a result of colder North Atlantic deep water. We find that the southward expansion of the mid-glacial ice sheet exerts a small impact on the AMOC. Partially coupled experiments reveal that the global surface cooling by the glacial ice sheet tends to reduce the AMOC by increasing the sea ice at both poles, and hence compensates for the strengthening effect of the enhanced surface wind over the North Atlantic. Our results show that the total effect of glacial ice sheets on the AMOC is determined by the two competing effects, surface wind and surface cooling. The relative strength of surface wind and surface cooling depends on the ice sheet configuration, and the strength of the surface cooling can be comparable to that of surface wind when changes in the extent of ice sheet are prominent.


Sign in / Sign up

Export Citation Format

Share Document