scholarly journals Mid-Holocene regional reorganization of climate variability

2009 ◽  
Vol 5 (1) ◽  
pp. 287-326 ◽  
Author(s):  
K. W. Wirtz ◽  
K. Bernhardt ◽  
G. Lohmann ◽  
C. Lemmen

Abstract. We integrate 130 globally distributed proxy time series to refine the understanding of climate variability during the Holocene. Cyclic anomalies and temporal trends in periodicity from the Lower to the Upper Holocene are extracted by combining Lomb-Scargle Fourier-transformed spectra with bootstrapping. Results were cross-checked by counting events in the time series. Main outcomes are: First, the propensity of the climate system to fluctuations is a region specific property. Many records of adjacent sites reveal a similar change in variability although they belong to different proxy types (e.g., δ18O, lithic composition). Secondly, at most sites, irreversible change occured in the Mid-Holocene. We suggest that altered ocean circulation together with slightly modified coupling intensity between regional climate subsystems around the 5.5 kyr BP event (termination of the African Humid Period) were responsible for the shift. Fluctuations especially intensified along a pan-American corridor. This may have led to an unequal crisis probability for early human civilizations in the Old and New World. Our study did not produce evidence for millennial scale cyclicity in some solar activity proxies for the Upper Holocene, nor for a privileged role of the prominent 250, 550, 900 and 1450 yr cycles. This lack of global periodicities corroborates the regional character of climate variability.

2020 ◽  
Author(s):  
Marie Harbott ◽  
Henry C. Wu ◽  
Henning Kuhnert ◽  
Simone A. Kasemann ◽  
Carlos Jimenez ◽  
...  

<p>Ocean warming and ocean acidification (OA) are increasingly influencing marine life. Parts of the increasing amount of CO<sub>2</sub> in the atmosphere will eventually get absorbed by the ocean, which changes the oceans carbonate chemistry and threatens the ecological competitiveness of calcareous marine organisms. Currently,  the global coverage of studies on the development of pH since preindustrial times is sparse. An important region to study environmental and climate variations is the northwestern coastal part of Cuba where the Loop Current (LC) joins the Florida Current and contributes to the Gulf Stream. The tropical Atlantic is a primary region for the formation of warm surface water of the thermohaline ocean circulation and the Caribbean in particular as a habitat for coral reefs in the Atlantic making them susceptible to changes in water temperatures and carbonate chemistry. This provides a unique chance to study multiple aspects of the implications of anthropogenic activities such as changes in SST, ocean pH, and carbonate chemistry using the coral skeletal geochemistry as an archive of climate and environmental changes. Here we present results from a multi-proxy approach for the reconstruction of environmental change and natural climate variability from a North Cuban Siderastrea siderea coral. The sub-seasonally resolved records indicate interannual to decadal changes in SST and seawater carbonate chemistry since 1830 CE. The comparison with pH will provide clues on whether the regional climate variability has been directly affected by atmospheric CO<sub>2</sub> forcing.</p>


2020 ◽  
Author(s):  
Mattia Poinelli ◽  
Eric Larour ◽  
Riccardo Riva

<p>The break-up of large ice shelves and the associated loss of ice are thought to play a destabilizing role in the ice sheet dynamics. Although ice shelves are a substantial buttressing source in the stability of continental ice sheets, the propagation of large rifts eventually leads to the break-up of icebergs into the ocean. As consequence, this loss of ice would trigger further glacier acceleration and ice sheets retreat, destabilizing the ice cap. Retreat and collapse of ice sheets are also thought to be related to regional climate warming. Indeed, satellite observations suggest that a warming surrounding would induce the ice sheet to progressive thinning and weakening.</p><p>The prolongation of un-grounded ice into the ocean is often interrupted by the propagation of fractures that eventually separates large icebergs from the ice shelf. These fractures are called rifts and range from dimensions of 10 to 100 km. A recent example of such phenomena is the massive break-up of the Larsen C in July, 2017 which followed the disintegration of Larsen A in 1995 and the partial break-up of Larsen B in 2002. The tabular iceberg formed by Larsen C was limited by the propagation of a large rift that began in summer 2016, although the ice shelf had already been thinning since 1992.</p><p>Rift initiation and propagation are thought to be the result of glaciological and oceanographic sources that trigger ice to break. Nonetheless, exact mechanisms remain elusive. The on-going project focuses on ice-ocean interactions in ice shelves that accommodate rifts by using oceanographic models. The goal is to couple rift propagation and ocean circulation underneath ice cavities in order to infer how basal melting affects the development of rifts. The numerical framework is developed within the capabilities of the MITgcm. We aim to identify the sensitivity of propagation rate and opening rate of rifts to variations in the ocean circulation that have occurred during the separation of part of the ice shelf.</p><p>On a larger scale, we are interested in the role of rifting in the stability of Antarctic shelves. Therefore, we work toward a better understanding of which processes are involved in the triggering of rift propagation.</p>


Author(s):  
Sanne B. Geeraerts ◽  
Joyce Endendijk ◽  
Kirby Deater-Deckard ◽  
Jorg Huijding ◽  
Marike H. F. Deutz ◽  
...  

2019 ◽  
Vol 47 (3) ◽  
pp. 80-91
Author(s):  
V. G. Neiman

The main content of the work consists of certain systematization and addition of longexisting, but eventually deformed and partly lost qualitative ideas about the role of thermal and wind factors that determine the physical mechanism of the World Ocean’s General Circulation System (OGCS). It is noted that the conceptual foundations of the theory of the OGCS in one form or another are contained in the works of many well-known hydrophysicists of the last century, but the aggregate, logically coherent description of the key factors determining the physical model of the OGCS in the public literature is not so easy to find. An attempt is made to clarify and concretize some general ideas about the two key blocks that form the basis of an adequate physical model of the system of oceanic water masses motion in a climatic scale. Attention is drawn to the fact that when analyzing the OGCS it is necessary to take into account not only immediate but also indirect effects of thermal and wind factors on the ocean surface. In conclusion, it is noted that, in the end, by the uneven flow of heat to the surface of the ocean can be explained the nature of both external and almost all internal factors, in one way or another contributing to the excitation of the general, or climatic, ocean circulation.


Sign in / Sign up

Export Citation Format

Share Document