scholarly journals The climate in the Baltic Sea region during the last millennium

2012 ◽  
Vol 8 (2) ◽  
pp. 1369-1407 ◽  
Author(s):  
S. Schimanke ◽  
H. E. M. Meier ◽  
E. Kjellström ◽  
G. Strandberg ◽  
R. Hordoir

Abstract. Variability and long-term climate change in the Baltic Sea region is investigated for the pre-industrial period of the last millennium. For the first time dynamical downscaling covering the complete millennium is conducted with a regional climate model in this area. As a result of changing external forcing conditions the model simulation shows warm conditions in the first centuries followed by a gradual cooling until c. 1700 before temperature increases in the last centuries. This long-term evolution, with a Medieval Climate Anomaly (MCA) and a Little Ice Age (LIA), is in broad agreement with proxy-based reconstructions. However, the timing of warm and cold events is not captured at all times. We show that the regional response to the global climate anomalies is to a strong degree modified by the large-scale circulation in the model. In particular, we find that a positive NAO-phase simulated during MCA contributes to enhancing winter temperatures and precipitation in the region while a negative NAO-anomaly in the LIA reduces them. In a second step, the regional ocean model RCO is used to investigate the impact of atmospheric changes onto the Baltic Sea for two 100 yr time slices representing the MCA and the LIA. Besides the warming of the Baltic Sea the water becomes fresher at all levels during the MCA. This is induced by increased runoff and stronger westerly winds. Moreover, the oxygen concentrations in the deep layers are slightly reduced during the MCA. Additional sensitivity studies are conducted to investigate the impact of even higher temperatures and increased nutrient loads. The presented experiments suggest that changing nutrient loads may be more important determining oxygen depletion than changes in temperature or dynamic feedbacks.

2012 ◽  
Vol 8 (5) ◽  
pp. 1419-1433 ◽  
Author(s):  
S. Schimanke ◽  
H. E. M. Meier ◽  
E. Kjellström ◽  
G. Strandberg ◽  
R. Hordoir

Abstract. Variability and long-term climate change in the Baltic Sea region is investigated for the pre-industrial period of the last millennium. For the first time dynamical downscaling covering the complete millennium is conducted with a regional climate model in this area. As a result of changing external forcing conditions, the model simulation shows warm conditions in the first centuries followed by a gradual cooling until ca. 1700 before temperature increases in the last centuries. This long-term evolution, with a Medieval Climate Anomaly (MCA) and a Little Ice Age (LIA), is in broad agreement with proxy-based reconstructions. However, the timing of warm and cold events is not captured at all times. We show that the regional response to the global climate anomalies is to a strong degree modified by the large-scale circulation in the model. In particular, we find that a positive phase of the North Atlantic Oscillation (NAO) simulated during MCA contributes to enhancing winter temperatures and precipitation in the region while a negative NAO index in the LIA reduces them. In a second step, the regional ocean model (RCO-SCOBI) is used to investigate the impact of atmospheric changes onto the Baltic Sea for two 100 yr time slices representing the MCA and the LIA. Besides the warming of the Baltic Sea, the water becomes fresher at all levels during the MCA. This is induced by increased runoff and stronger westerly winds. Moreover, the oxygen concentrations in the deep layers are slightly reduced during the MCA. Additional sensitivity studies are conducted to investigate the impact of even higher temperatures and increased nutrient loads. The presented experiments suggest that changing nutrient loads may be more important determining oxygen depletion than changes in temperature or dynamic feedbacks.


AMBIO ◽  
2019 ◽  
Vol 48 (11) ◽  
pp. 1325-1336 ◽  
Author(s):  
Alena Bartosova ◽  
René Capell ◽  
Jørgen E. Olesen ◽  
Mohamed Jabloun ◽  
Jens Christian Refsgaard ◽  
...  

Abstract The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways. Average nutrient loads are projected to increase by 8% and 14% for nitrogen and phosphorus, respectively, in response to climate change scenarios. In contrast, changes in the socioeconomic drivers can lead to a decrease of 13% and 6% or an increase of 11% and 9% in nitrogen and phosphorus loads, respectively, depending on the pathway. This indicates that policy decisions still play a major role in climate adaptation and in managing eutrophication in the Baltic Sea region.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 115-134
Author(s):  
Daniel Neumann ◽  
Matthias Karl ◽  
Hagen Radtke ◽  
Volker Matthias ◽  
René Friedland ◽  
...  

Abstract. The western Baltic Sea is impacted by various anthropogenic activities and stressed by high riverine and atmospheric nutrient loads. Atmospheric deposition accounts for up to a third of the nitrogen input into the Baltic Sea and contributes to eutrophication. Amongst other emission sources, the shipping sector is a relevant contributor to the atmospheric concentrations of nitrogen oxides (NOX) in marine regions. Thus, it also contributes to atmospheric deposition of bioavailable oxidized nitrogen into the Baltic Sea. In this study, the contribution of shipping emissions to the nitrogen budget in the western Baltic Sea is evaluated with the coupled three-dimensional physical biogeochemical model MOM–ERGOM (Modular Ocean Model–Ecological ReGional Ocean Model) in order to assess the relevance of shipping emissions for eutrophication. The atmospheric input of bioavailable nitrogen impacts eutrophication differently depending on the time and place of input. The shipping sector contributes up to 5 % to the total nitrogen concentrations in the water. The impact of shipping-related nitrogen is highest in the offshore regions distant from the coast in early summer, but its contribution is considerably reduced during blooms of cyanobacteria in late summer because the cyanobacteria fix molecular nitrogen. Although absolute shipping-related total nitrogen concentrations are high in some coastal regions, the relative contribution of the shipping sector is low in the vicinity of the coast because of high riverine nutrient loads.


2019 ◽  
Author(s):  
Daniel Neumann ◽  
Matthias Karl ◽  
Hagen Radtke ◽  
Volker Matthias ◽  
René Friedland ◽  
...  

Abstract. The western Baltic Sea is impacted by various anthropogenic activities and stressed by high riverine and atmospheric nutrient loads. Atmospheric deposition accounts for up to a third of the nitrogen input into the Baltic Sea and contributes to eutrophication. Amongst other emission sources, the shipping sector is a relevant contributor to atmospheric concentrations of nitrogen oxides (NOx) in marine regions. Thus, it also contributes to atmospheric deposition of bioavailable oxidized nitrogen into the Baltic Sea. In this study, the contribution of shipping emissions to the nitrogen budget in the western Baltic Sea is evaluated with the coupled three-dimensional physical biogeochemical model MOM-ERGOM in order to assess the relevance of shipping emissions for eutrophication. The input of bioavailable nitrogen impacts eutrophication differently depending on time and place of input – e.g. nitrogen is processed and denitrified faster in flat coastal regions. The shipping sector contributes up to 5 % to the total nitrogen concentrations in the water. The impact of shipping-related nitrogen is highest in the off-shore regions distant to the coast in early summer but is considerably reduced during blooms of cyanobacteria in later summer. Although absolute shipping-related total nitrogen concentrations are high in some coastal regions, the relative contribution of the shipping sector is low in the vicinity to the coast because of high riverine nutrient loads.


2021 ◽  
Vol 19 (3) ◽  
pp. 33-56
Author(s):  
Alexander Sergunin

This study examines Russia’s policies towards and within the Councilof the Baltic Sea States in the aftermath of the Ukrainian and other internationalcrises. More specifically, this paper analyses Russia’s interest in andexpectations from the CBSS, as well as Moscow’s institutional behaviour in theCouncil. The CBSS is viewed by Russia as both a centrepiece and cornerstoneof the regional governance system. Moscow also sees the CBSS as an importanttool for overcoming the politico-diplomatic isolation where Russia founditself with the start of the Ukrainian crisis. With the help of the CBSS, it retainsits ability to influence socioeconomic, political, environmental, and humanitariandevelopments in the Baltic Sea region. Russia supported the Council’sthree long-term priority areas: a regional identity, a sustainable and prosperousregion, and a safe and secure region. Russia favoured further the Council’sinstitutionalization and strengthening of its role in the regional governancesystem. Despite the fact that Russia’s relations with other CBSS member-statesremain tense and that Moscow does not always manage to use the Councilto promote its interests in the region, the CBSS is still seen by Russia as animportant platform for regional cooperation.


AMBIO ◽  
2019 ◽  
Vol 48 (11) ◽  
pp. 1377-1388 ◽  
Author(s):  
Markku Ollikainen ◽  
Berit Hasler ◽  
Katarina Elofsson ◽  
Antti Iho ◽  
Hans E. Andersen ◽  
...  

Abstract This paper analyzes the main weaknesses and key avenues for improvement of nutrient policies in the Baltic Sea region. HELCOM’s Baltic Sea Action Plan (BSAP), accepted by the Baltic Sea countries in 2007, was based on an innovative ecological modeling of the Baltic Sea environment and addressed the impact of the combination of riverine loading and transfer of nutrients on the ecological status of the sea and its sub-basins. We argue, however, that the assigned country-specific targets of nutrient loading do not reach the same level of sophistication, because they are not based on careful economic and policy analysis. We show an increasing gap between the state-of-the-art policy alternatives and the existing command-and-control-based approaches to the protection of the Baltic Sea environment and outline the most important steps for a Baltic Sea Socioeconomic Action Plan. It is time to raise the socioeconomic design of nutrient policies to the same level of sophistication as the ecological foundations of the BSAP.


2021 ◽  
Author(s):  
Sara Jutterström ◽  
Filip Moldan ◽  
Jana Moldanová ◽  
Matthias Karl ◽  
Volker Matthias ◽  
...  

Abstract. The emissions of nitrogen (N) and sulphur (S) species to the atmosphere from shipping significantly contribute to S and N deposition near the coast, and to acidification and/or eutrophication of soils and freshwaters. In the countries around the Baltic Sea the shipping volume and its relative importance as a source of emissions are expected to increase if an efficient regulation would not be implemented. To assess the extent of environmental damage due to ship emissions for the Baltic Sea area, the exceedance of critical loads (CLs) for N and S has been calculated for the years 2012 and 2040. The paper evaluates the effects of several future scenarios including the implementation of NECA and SECA (Nitrogen resp. Sulphur Emission Control Areas). The implementation of NECA and SECA caused a significant decrease in exceedance of critical loads for N as a nutrient while the impact on the – already much lower – exceedance of critical loads for acidification was less pronounced. The relative contribution from Baltic shipping to the total deposition decreased from 2012 to the 2040 scenarios for both S and N. In contrast to exceedances of CLs for acidification, shipping still has an impact on exceedances for eutrophication in 2040.


Author(s):  
Max Hogeforster ◽  
Christian Wildt

The economy of the Baltic Sea Region is characterised by small and medium-sized enterprises. One of the main limitations to growth continues to be the lack of qualified personnel. Dual training as a form of work-based learning can promote the employability of young people in the long term and attract additional workforce. Based on a review of recent literature the status of VET and dual training in the selected countries of Poland, Latvia, Lithuania and Russia are described. Complementary the first results of a recent survey of companies, schools and administrations is presented, that confirms that in most BSR countries companies are not engaged in dual education. The evaluation of the literature clearly shows that a lot has been done to encourage work-based learning in the Baltic Sea Region, but the survey indicates, that the legal changes and possibilities have yet not fully arrived at the companies that could provide train-ing spots.


Sign in / Sign up

Export Citation Format

Share Document