scholarly journals Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea

AMBIO ◽  
2019 ◽  
Vol 48 (11) ◽  
pp. 1325-1336 ◽  
Author(s):  
Alena Bartosova ◽  
René Capell ◽  
Jørgen E. Olesen ◽  
Mohamed Jabloun ◽  
Jens Christian Refsgaard ◽  
...  

Abstract The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways. Average nutrient loads are projected to increase by 8% and 14% for nitrogen and phosphorus, respectively, in response to climate change scenarios. In contrast, changes in the socioeconomic drivers can lead to a decrease of 13% and 6% or an increase of 11% and 9% in nitrogen and phosphorus loads, respectively, depending on the pathway. This indicates that policy decisions still play a major role in climate adaptation and in managing eutrophication in the Baltic Sea region.

2002 ◽  
Vol 6 (2) ◽  
pp. 197-209 ◽  
Author(s):  
F. Bouraoui ◽  
L. Galbiati ◽  
G. Bidoglio

Abstract. This study assessed the impact of potential climate change on the nutrient loads to surface and sub-surface waters from agricultural areas and was conducted using the Soil and Water Assessment Tool (SWAT) model. The study focused on a 3500 km2 catchment located in northern England, the Yorkshire Ouse. The SWAT model was calibrated and validated using sets of five years' measurements of nitrate and ortho-phosphorus concentrations and water flow. To increase the reliability of the hydrological model predictions, an uncertainty analysis was conducted by perturbing input parameters using a Monte-Carlo technique. The SWAT model was then run using a baseline scenario corresponding to an actual measured time series of daily temperature and precipitation, and six climate change scenarios. Because of the increase in temperature, all climate scenarios introduced an increase of actual evapotranspiration. Faster crop growth and an increased nutrient uptake resulted, as did an increase of annual losses of total nitrogen and phosphorus, however, with strong seasonal differences. Keywords: SWAT model, climate change, nutrient loads


2020 ◽  
Vol 77 (6) ◽  
pp. 2089-2105
Author(s):  
Mayya Gogina ◽  
Michael L Zettler ◽  
Irene Wåhlström ◽  
Helén Andersson ◽  
Hagen Radtke ◽  
...  

Abstract Species in the brackish and estuarine ecosystems will experience multiple changes in hydrographic variables due to ongoing climate change and nutrient loads. Here, we investigate how a glacial relict species (Saduria entomon), having relatively cold, low salinity biogeographic origin, could be affected by the combined scenarios of climate change and eutrophication. It is an important prey for higher trophic-level species such as cod, and a predator of other benthic animals. We constructed habitat distribution models based occurrence and density of this species across the entire Baltic and estimated the relative importance of different driving variables. We then used two regional coupled ocean-biogeochemical models to investigate the combined impacts of two future climate change and nutrient loads scenarios on its spatial distribution in 2070–2100. According to the scenarios, the Baltic Sea will become warmer and fresher. Our results show that expected changes in salinity and temperature outrank those due to two nutrient-load scenarios (Baltic Sea Action Plan and business as usual) in their effect on S. entomon distribution. The results are relatively similar when using different models with the same scenarios, thereby increasing the confidence of projections. Overall, our models predict a net increase (and local declines) of suitable habitat area, total abundance and biomass for this species, which is probably facilitated by strong osmoregulation ability and tolerance to temperature changes. We emphasize the necessity of considering multiple hydrographic variables when estimating climate change impacts on species living in brackish and estuarine systems.


2019 ◽  
Author(s):  
Christian Dieterich ◽  
Matthias Gröger ◽  
Lars Arneborg ◽  
Helén C. Andersson

Abstract. An ensemble of regional climate change scenarios for the Baltic Sea is validated and analyzed with respect to extreme sea levels (ESLs) in the recent past. The ERA40 reanalysis and five Coupled Model Intercomparison Project Phase 5 (CMIP5) global general circulation models (GCMs) have been downscaled with the coupled atmosphere-ice-ocean model RCA4-NEMO. Validation of 100-year return levels against observational estimates along the Swedish coast shows that the model estimates are within the 95 % confidence limits for most stations, except those on the west coast. The ensemble mean 100-year return levels turns out to be the best estimator with biases of less than 10 cm. The ensemble spread includes the 100-year return levels based on observations. A series of sensitivity studies explores how the choice of different parameterizations, open boundary conditions and atmospheric forcing affects the estimates of 100-year return levels. A small ensemble of different regional climate models (RCMs) forced with ERA40 shows the highest uncertainty in ESLs in the southwestern Baltic Sea and in the northeastern part of the Bothnian Bay. Also the Skagerrak, Gulf of Finland and Gulf of Riga are sensitive to the choice of the RCM. A second ensemble of one RCM forced with different GCMs uncovers a lower sensitivity of ESLs against the variance introduced by different GCMs. The uncertainty in the estimates of 100-year return levels introduced by GCMs ranges from 20 cm to 40 cm at different stations. It is of similar size as the 95 % confidence limits of 100-year return levels from observational records.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 115-134
Author(s):  
Daniel Neumann ◽  
Matthias Karl ◽  
Hagen Radtke ◽  
Volker Matthias ◽  
René Friedland ◽  
...  

Abstract. The western Baltic Sea is impacted by various anthropogenic activities and stressed by high riverine and atmospheric nutrient loads. Atmospheric deposition accounts for up to a third of the nitrogen input into the Baltic Sea and contributes to eutrophication. Amongst other emission sources, the shipping sector is a relevant contributor to the atmospheric concentrations of nitrogen oxides (NOX) in marine regions. Thus, it also contributes to atmospheric deposition of bioavailable oxidized nitrogen into the Baltic Sea. In this study, the contribution of shipping emissions to the nitrogen budget in the western Baltic Sea is evaluated with the coupled three-dimensional physical biogeochemical model MOM–ERGOM (Modular Ocean Model–Ecological ReGional Ocean Model) in order to assess the relevance of shipping emissions for eutrophication. The atmospheric input of bioavailable nitrogen impacts eutrophication differently depending on the time and place of input. The shipping sector contributes up to 5 % to the total nitrogen concentrations in the water. The impact of shipping-related nitrogen is highest in the offshore regions distant from the coast in early summer, but its contribution is considerably reduced during blooms of cyanobacteria in late summer because the cyanobacteria fix molecular nitrogen. Although absolute shipping-related total nitrogen concentrations are high in some coastal regions, the relative contribution of the shipping sector is low in the vicinity of the coast because of high riverine nutrient loads.


2020 ◽  
Author(s):  
Alena Bartosova ◽  
René Capell ◽  
Jørgen E. Olesen ◽  
Berit Arheimer

<p>The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea. These freshwater inflows vary in magnitude from year to year as well as within each year due to e.g. natural variability, weather patterns, and seasonal human activities. Nutrient transport models are important tools for assessments of macro-nutrient fluxes (nitrogen, phosphorus) and for evaluating the connection between pollution sources and the assessed water body. While understanding of current status is important, impacts from changing climate and socio-economics on freshwater inflows to the Baltic Sea also need to be taken into account when planning management practices and mitigation measures.</p><p>Continental to global scale catchment-based hydrological models have emerged in recent years as tools e.g. for flood forecasting, large-scale climate impact analyses, and estimation of time-dynamic water fluxes into sea basins. Here, we present results from the pan-European rainfall-runoff and nutrient transfer model E-HYPE, developed as a multi-purpose tool for large-scale hydrological analyses. We compared current freshwater inflows from land with those from dynamic modelling with E-HYPE under various climate and socioeconomic conditions. The socioeconomic conditions (land use, agricultural practices, population changes, dietary changes, atmospheric deposition, and wastewater technologies) were evaluated for 3 additional time horizons: 2050s using the Shared Socioeconomic Pathways, 1900s using historical data, and a reference period using a synthetic “no human impact” scenario. An ensemble of 4 climate models that preserves the range of projected changes in precipitation and temperature from a larger ensemble was selected for analysis of climate impacts in 2050s.  </p><p>We show that while climate change affects nutrient loads to the Baltic Sea, these impacts can be overshadowed by the impacts of changing socioeconomic factors. Historical nitrogen loads were estimated as 43% and 33% of the current loads for the 1900s and the “no human impact” scenarios, respectively. Average nitrogen loads are projected to increase by 4-10% (8% on average) as a response to climate change by 2050s. Purely mitigation measures that did not address the magnitude of the nutrient sources reduced the total nitrogen load by <5%, with local efficiencies being reduced through retention processes. However, changes in the socioeconomic drivers led to significant changes in the future loads with the range of impacts spanning 30% of the current load depending on the socioeconomic pathway to be followed. This means that policy decisions have by far the largest impact when managing eutrophication in the Baltic Sea region.</p><p>Bartosova, A., Capell, R., Olesen, J.E. et al. (2019). Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea. Ambio 48, 1325–1336 doi:10.1007/s13280-019-01243-5</p>


2019 ◽  
Author(s):  
Daniel Neumann ◽  
Matthias Karl ◽  
Hagen Radtke ◽  
Volker Matthias ◽  
René Friedland ◽  
...  

Abstract. The western Baltic Sea is impacted by various anthropogenic activities and stressed by high riverine and atmospheric nutrient loads. Atmospheric deposition accounts for up to a third of the nitrogen input into the Baltic Sea and contributes to eutrophication. Amongst other emission sources, the shipping sector is a relevant contributor to atmospheric concentrations of nitrogen oxides (NOx) in marine regions. Thus, it also contributes to atmospheric deposition of bioavailable oxidized nitrogen into the Baltic Sea. In this study, the contribution of shipping emissions to the nitrogen budget in the western Baltic Sea is evaluated with the coupled three-dimensional physical biogeochemical model MOM-ERGOM in order to assess the relevance of shipping emissions for eutrophication. The input of bioavailable nitrogen impacts eutrophication differently depending on time and place of input – e.g. nitrogen is processed and denitrified faster in flat coastal regions. The shipping sector contributes up to 5 % to the total nitrogen concentrations in the water. The impact of shipping-related nitrogen is highest in the off-shore regions distant to the coast in early summer but is considerably reduced during blooms of cyanobacteria in later summer. Although absolute shipping-related total nitrogen concentrations are high in some coastal regions, the relative contribution of the shipping sector is low in the vicinity to the coast because of high riverine nutrient loads.


2020 ◽  
Author(s):  
Eva Ehrnsten ◽  
Alf Norkko ◽  
Bärbel Müller-Karulis ◽  
Erik Gustafsson ◽  
Bo Gustafsson

<p>Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with the physical-biogeochemical BALTSEM model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan, but also with continued recent loads (mean loads 2012-2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid-21<sup>st</sup> century but then decreased, giving almost no net change by the end of the 21<sup>st</sup> century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic-pelagic coupling might be weaker in a warmer and less eutrophic sea.</p>


2012 ◽  
Vol 8 (5) ◽  
pp. 1419-1433 ◽  
Author(s):  
S. Schimanke ◽  
H. E. M. Meier ◽  
E. Kjellström ◽  
G. Strandberg ◽  
R. Hordoir

Abstract. Variability and long-term climate change in the Baltic Sea region is investigated for the pre-industrial period of the last millennium. For the first time dynamical downscaling covering the complete millennium is conducted with a regional climate model in this area. As a result of changing external forcing conditions, the model simulation shows warm conditions in the first centuries followed by a gradual cooling until ca. 1700 before temperature increases in the last centuries. This long-term evolution, with a Medieval Climate Anomaly (MCA) and a Little Ice Age (LIA), is in broad agreement with proxy-based reconstructions. However, the timing of warm and cold events is not captured at all times. We show that the regional response to the global climate anomalies is to a strong degree modified by the large-scale circulation in the model. In particular, we find that a positive phase of the North Atlantic Oscillation (NAO) simulated during MCA contributes to enhancing winter temperatures and precipitation in the region while a negative NAO index in the LIA reduces them. In a second step, the regional ocean model (RCO-SCOBI) is used to investigate the impact of atmospheric changes onto the Baltic Sea for two 100 yr time slices representing the MCA and the LIA. Besides the warming of the Baltic Sea, the water becomes fresher at all levels during the MCA. This is induced by increased runoff and stronger westerly winds. Moreover, the oxygen concentrations in the deep layers are slightly reduced during the MCA. Additional sensitivity studies are conducted to investigate the impact of even higher temperatures and increased nutrient loads. The presented experiments suggest that changing nutrient loads may be more important determining oxygen depletion than changes in temperature or dynamic feedbacks.


Ocean Science ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1399-1418
Author(s):  
Christian Dieterich ◽  
Matthias Gröger ◽  
Lars Arneborg ◽  
Helén C. Andersson

Abstract. We analyze extreme sea levels (ESLs) and related uncertainty in an ensemble of regional climate change scenarios for the Baltic Sea. The ERA-40 reanalysis and five Coupled Model Intercomparison Project phase 5 (CMIP5) global general circulation models (GCMs) have been dynamically downscaled with the coupled atmosphere–ice–ocean model RCA4-NEMO (Rossby Centre regional atmospheric model version 4 – Nucleus for European Modelling of the Ocean). The 100-year return levels along the Swedish coast in the ERA-40 hindcast are within the 95 % confidence limits of the observational estimates, except those on the west coast. The ensemble mean of the 100-year return levels averaged over the five GCMs shows biases of less than 10 cm. A series of sensitivity studies explores how the choice of different parameterizations, open boundary conditions and atmospheric forcing affects the estimates of 100-year return levels. A small ensemble of different regional climate models (RCMs) forced with ERA-40 shows the highest uncertainty in ESLs in the southwestern Baltic Sea and in the northeastern part of the Bothnian Bay. Some regions like the Skagerrak, Gulf of Finland and Gulf of Riga are sensitive to the choice of the RCM. A second ensemble of one RCM forced with different GCMs uncovers a lower sensitivity of ESLs against the variance introduced by different GCMs. The uncertainty in the estimates of 100-year return levels introduced by GCMs ranges from 20 to 40 cm at different stations and includes the estimates based on observations. It is of similar size to the 95 % confidence limits of 100-year return levels from tide gauge records.


Sign in / Sign up

Export Citation Format

Share Document