Mögliche künftige Trends der Lufttemperatur und des Blattaustriebs der Schwarzerle (Alnus glutinosa) in Deutschland

2021 ◽  
Author(s):  
Timm Waldau ◽  
Frank-M. Chmielewski

<p>Eine direkte Auswirkung des rezenten Klimawandels auf die Vegetation ist die Verfrühung phänologischer Stadien, besonders im Frühjahr (WALDAU & CHMIELEWSKI, 2018; CHMIELEWSKI et al., 2004; WOLFE et al., 2005). Diese Trends wurden weltweit beobachtet und sind hauptsächlich auf den Anstieg der Lufttemperatur zurückzuführen, was den engen Zusammenhang zwischen Pflanzenentwicklung und Temperatur belegt. Dieser stetige Temperaturanstieg wird sich in Zukunft fortsetzen und zu zeitlichen und räumlichen Verschiebungen in der Vegetationsentwicklung führen. Um diese Veränderungen abschätzen zu können, sind plausible phänologische Modelle erforderlich, wobei das Kältebedürfnis, das für die Überwindung der Dormanz erforderlich ist, hierbei eine der Schlüsselgrößen ist. <br />Ziel dieser Studie war es die zukünftigen Auswirkungen des Klimawandels auf die natürliche Vegetation in Deutschland abzuschätzen. In einer dreijährigen Studie (Winter 2015/16 – 2017/18) wurde der Zeitpunkt der Dormanzbrechung für verschiedene Baumarten experimentell in Klimakammerversuchen bestimmt. Im Rahmen dieses Vortrages sollen die Ergebnisse für die Schwarzerle (Alnus glutinosa) dargestellt werden. Nach der Ermittlung des für den Blattaustrieb der Schwarzerle notwendigen Kältereizes wurde ein Chilling/Forcing Modell parametrisiert und anschließend an den phänologischen Beobachtungdaten des Deutschen Wetterdienstes (1951-2015) validiert. Für die Abschätzung der künftigen klimatischen Entwicklung wurde ein Klimaensemble aus sieben verschieden Klimamodellrechnungen für zwei Klimaszenarien (RCP 2.6 & 8.5) verwendet. Für den Zeitraum 2010-2100 werden neben den zeitlichen Trends der Lufttemperatur und der Phänologie zusätzlich die regionalen Unterschiede in Deutschland (Nord-Ost/Nord-West/Süd-Ost/Süd-West) aufgezeigt.</p> <p> </p> <p>Literatur:</p> <p>CHMIELEWSKI, F. M., MÜLLER, A. & BRUNS, E. (2004): Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology 121 (1), 69-DOI: https://doi.org/10.1016/S0168-1923(03)00161-8.</p> <p>WALDAU, T. & CHMIELEWSKI, F. M. (2018): Spatial and temporal changes of spring temperature, thermal growing season and spring phenology in Germany 1951–2015. Meteorol. Z. 27 (4), 335-342.DOI: https://doi.org/10.1127/metz/2018/0923.</p> <p>WOLFE, D. W., SCHWARTZ, M. D., LAKSO, A. N., OTSUKI, Y., POOL, R. M. & SHAULIS, N. J. (2005): Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology 49 (5), 303-309. DOI: https://doi.org/10.1007/s00484-004-0248-9.</p>

2004 ◽  
Vol 121 (1-2) ◽  
pp. 69-78 ◽  
Author(s):  
Frank-M Chmielewski ◽  
Antje Müller ◽  
Ekko Bruns

2004 ◽  
Vol 49 (5) ◽  
pp. 303-309 ◽  
Author(s):  
David W. Wolfe ◽  
Mark D. Schwartz ◽  
Alan N. Lakso ◽  
Yuka Otsuki ◽  
Robert M. Pool ◽  
...  

Nova Hedwigia ◽  
2019 ◽  
Vol 109 (3) ◽  
pp. 425-433
Author(s):  
Carlos Lado ◽  
Miguel Ángel Ribes ◽  
Juan Francisco Moreno

The species Tubifera microsperma, distributed in tropical Asia, Hawaii, Japan, tropical Africa, Central and South America, tropical and temperate North America, and central and north of Europe is reported for the first time in the continental Mediterranean region. The specimens were recorded in two localities of the coast of Spain, on the trunk of Olea europaea and Alnus glutinosa, and confirm the expansion of the species to the Mediterranean region. A detailed description of the European collections, as well as comments on morphology, distribution and ecology are provided. Illustrations, with macro, micro and SEM photographs, of the Spanish collections, are also included. Documented climate changes have a negative effect on the distribution of some species, but provide new opportunities for others like T. microsperma, that slowly expand their area of distribution.


2021 ◽  
Vol 307 ◽  
pp. 108491
Author(s):  
Eike Luedeling ◽  
Katja Schiffers ◽  
Till Fohrmann ◽  
Carsten Urbach

2018 ◽  
Author(s):  
Craig C. Brelsford ◽  
T Matthew Robson

AbstractDuring spring, utilising multiple cues allow temperate tree species to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400-500nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp, the effects of blue light on spring-time bud burst of temperate deciduous tree species has not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in temperate tree species, and that late-successional species would respond more than early-successional species, who’s bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400-700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.Key MessageAn LED spectrum containing blue light advanced bud burst in branches of Betula pendula, Alnus glutinosa and Quercus robur compared with a spectrum without blue light in a controlled environment.


2006 ◽  
Vol 138 (1-4) ◽  
pp. 82-92 ◽  
Author(s):  
Fulu Tao ◽  
Masayuki Yokozawa ◽  
Yinlong Xu ◽  
Yousay Hayashi ◽  
Zhao Zhang
Keyword(s):  

Author(s):  
Wojciech Ziętara

The paper presents the competitive position of Polish farms covered by the Polish FADN system in the years 2008- 2014. Competitive assessments were made for the following types of agricultural holdings specialized in: field crops (various crops), cereals, oily and high protein crops, vegetable crops, fruit trees, milk production and pig farming. The competitive position of the examined farms was determined by the W. Kleinhanss’ competitiveness index distinguishing competing and competitive farms.


2020 ◽  
Author(s):  
Catherine Chamberlain ◽  
Benjamin Cook ◽  
Ignacio Morales-Castilla ◽  
Elizabeth Wolkovich

<p>Temperate and boreal forests are shaped by late spring freezing events after budburst, which are also known as false springs. Research has generated conflicting results on whether or not these events will change with climate change, potentially because---to date---no study has compared the myriad climatic and geographic factors that contribute to a plant's risk of a false spring. We assessed and compared the strength of the effects of mean spring temperature, distance from the coast, elevation and the North Atlantic Oscillation (NAO) using PEP725 leafout data for six temperate, decidious tree species across 11,648 sites in Central Europe and how these predictors shifted with climate change. Across species before recent warming, mean spring temperature and distance from the coast were the strongest predictors, with higher mean spring temperatures associated with decreased risk in false springs (–7.64% per 2°C increase) and sites further from the coast experiencing an increased risk (5.32% per 150km from the coast). Elevation (2.23% per 200m increase in elevation) and NAO index (1.91% per 0.3 increase) also increased false spring risk. </p><p>With climate change, elevation and distance from coast---i.e., the geographic factors---remain relatively stable, while climatic factors shifted in magnitude for mean spring temperature (down to -2.84% in risk per 2°C), and in direction, with positive NAO phases leading to lower risk (-9.15% per 0.3). The residual effects of climate change---unexplained by the climatic and geographic factors already included in the model---magnified the species-level variation in risk, with risk increasing among early-leafout species (i.e., <em>Aesculus hippocastanum</em>, <em>Alnus glutinosa</em> and <em>Betula pendula</em>) but a decline or no change in risk among late-leafout species (i.e., <em>Fagus sylvatica</em>, <em>Fraxinus excelsior</em> and <em>Quercus robur</em>). Our results show that climate change has reshaped the major drivers of false spring risk and highlight how considering multiple factors can yield a better understanding of the complexities of climate change.</p>


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Marc Peaucelle ◽  
Ivan A. Janssens ◽  
Benjamin D. Stocker ◽  
Adrià Descals Ferrando ◽  
Yongshuo H. Fu ◽  
...  

AbstractLeaf unfolding in temperate forests is driven by spring temperature, but little is known about the spatial variance of that temperature dependency. Here we use in situ leaf unfolding observations for eight deciduous tree species to show that the two factors that control chilling (number of cold days) and heat requirement (growing degree days at leaf unfolding, GDDreq) only explain 30% of the spatial variance of leaf unfolding. Radiation and aridity differences among sites together explain 10% of the spatial variance of leaf unfolding date, and 40% of the variation in GDDreq. Radiation intensity is positively correlated with GDDreq and aridity is negatively correlated with GDDreq spatial variance. These results suggest that leaf unfolding of temperate deciduous trees is adapted to local mean climate, including water and light availability, through altered sensitivity to spring temperature. Such adaptation of heat requirement to background climate would imply that models using constant temperature response are inherently inaccurate at local scale.


Sign in / Sign up

Export Citation Format

Share Document