scholarly journals Chemotaxonomic patterns of vegetation and soils along altitudinal transects of the Bale Mountains, Ethiopia, and implications for paleovegetation reconstructions – Part 1: stable isotopes and sugar biomarkers

2019 ◽  
Vol 68 (2) ◽  
pp. 177-188 ◽  
Author(s):  
Betelhem Mekonnen ◽  
Wolfgang Zech ◽  
Bruno Glaser ◽  
Bruk Lemma ◽  
Tobias Bromm ◽  
...  

Abstract. Today, on the Sanetti Plateau in the Bale Mountains of Ethiopia, only fragmented patches of Erica species can be found at high altitudes (between 3900 and 4200 m a.s.l.). However, it is hypothesized that during the later part of the last glacial period and the early Holocene the plateau was extensively covered by Erica shrubs. Furthermore, it is assumed that the vegetation was later heavily destroyed by human-induced fire and/or climate change phenomena. The objective of this study is to contribute to paleovegetation reconstructions of the Sanetti Plateau by evaluating the potential of stable isotopes (δ13C and δ15N) and sugar biomarkers for distinguishing the dominant plant species, including Erica, and the soils below the plants. In a companion paper (Lemma et al., 2019a) we address the same issue by evaluating lignin-derived phenols and leaf-wax-derived n-alkane biomarkers. The stable carbon (δ13C) and nitrogen (δ15N) isotope values of the plant samples range from −27.5  ‰ to −23.9  ‰ and −4.8  ‰ to 5.1  ‰, respectively. We found no significant δ13C and δ15N differences between the dominant plant species. Mineral topsoils (Ah horizons) yielded more positive values than plant samples and organic layers (O layers), which reflects mineralization processes. Moreover, the δ15N values became generally more negative at higher altitudes. This likely indicates that the N cycle is more closed compared to lower altitudes. δ15N maxima around 4000 m a.s.l. point to fire-induced opening of the N cycle at the chosen study sites. Erica species yielded the lowest overall total sugar concentration (ranging from 58 to 118 mg g−1), dominated by galactose (G) and mannose (M). By contrast, Festuca species revealed much higher total sugar concentrations ranging from 104 to 253 mg g−1, dominated by the pentose sugars arabinose (A) and xylose (X). Although a differentiation between Erica versus Festuca, Alchemilla and Helichrysum is possible based on (G + M) ∕ (A + X) ratios, Erica cannot be unambiguously distinguished from all other plant species occurring on the Sanetti Plateau. In addition, plant-characteristic (G + M) ∕ (A + X) sugar patterns change during soil organic matter formation in the Ah horizons. This can be likely attributed to degradation effects and soil microbial build-up of galactose and mannose. In conclusion, soil degradation processes seem to render sugar biomarker proxies unusable for the reconstruction of the past extent of Erica on the Sanetti Plateau, Bale Mountains, Ethiopia. This finding is of relevance beyond our case study.

Author(s):  
Maibam Haripriya Devi ◽  
Potsangbam Kumar Singh

Keibul Lamjao National Park (KLNP), Loktak lake Manipur, north-east India which is one of the 25 Ramsar sites of international importance and the biggest fresh water Lake in India. Macrophytes of the floating Phumdi mat environment of KLNP play an important role in the aquatic environment. An investigation was planned during the period of about three years from March, 2010 to December 2012, to study the diversity pattern of habitats of macrophytes available in six study sites of KLNP viz., 1.Kumbi, 2.Khordak, 3.Keibul, 4.Toya, 5. Nongmaikhong and 6. Sargam. All total 85 dominant plant species were recorded. Maximum plant species (49) was observed in Site-1 Kumbi (Altitude-780m) and minimum (27) in Site-3 Keibul (Altitude-772). The variation of plant species may be because of the slight variation of altitude. As the six study sites are distributed as floating aquatic environment in KLNP Loktak Lake, there is favourable place of the plants in higher altitude and altitude represents a complex gradient along which many environmental variables change concomitantly. In all the six study sites, common distribution of ten dominant plant macrophytes viz., Ageratum conizoides, Hedychium coronarium, Leersia hexandra, Oenanthe javanica, Phragmites karka, Polygonum sagittatum, Saccharum munja, Thelypteris interrupta and Zizania latifolia was noticed. Individual dominant plant was recorded in other sites also viz., Azola piñata in site-6; Xanthium atrumarium, Polygonum orientale, Dichrocephala latifolia and Cymbopogon citratus in site-2; Arundo plinii, Cuscuta reflexa, Gnaphalium luteo-album, Hydrilla verticillata, Marsilia minuta, Saccolepis interrupta, Selvenia cuculata and Utricularia spp. in site-1. Variation of IVI value of dominant plant species was observed in this study. Even though 85 dominant plants were selected for all the 6 sites, however, maximum plant richness expressed in IVI was recorded in case of Zizania latifolia (Site-5, IVI-87.5) and minimum IVI in case of Xanthium strumarium (Site-2, IVI-1.13). The diversity pattern and habitats of macrophytes in KLNP Phumdi environment might be due to water availability along the altitudinal gradient and other environmental factors suited in the study sites and expected to be an important factor affecting the survival and fecundity of plant population. We need to conserve the natural habitat of KLNP thereby maintaining the luxuriant growth of the seasonal and perennial, macrophytes, so as to maintain the natural flora and fauna of the park. These plants are the food of man and animal therefore, it needs a proper care and attention to protect them from over exploitation. Considering the diversity pattern of habitats of Macrophytes in KLNP, a floating mat Phumdi environment with high floral diversity and unique vegetation assemblage, it has been suggested that this track and adjoining sites should be declared as ecologically sensitive area not only the World Heritage Site.


2019 ◽  
Author(s):  
Marko J. Spasojevic ◽  
Sören Weber1

Stable carbon (C) and nitrogen (N) isotopes in plants are important indicators of plant water use efficiency and N acquisition strategies. While often regarded as being under environmental control, there is growing evidence that evolutionary history may also shape variation in stable isotope ratios (δ13C and δ15N) among plant species. Here we examined patterns of foliar δ13C and δ15N in alpine tundra for 59 species in 20 plant families. To assess the importance of environmental controls and evolutionary history, we examined if average δ13C and δ15N predictably differed among habitat types, if individual species exhibited intraspecific trait variation (ITV) in δ13C and δ15N, and if there were a significant phylogenetic signal in δ13C and δ15N. We found that variation among habitat types in both δ13C and δ15N mirrored well-known patterns of water and nitrogen limitation. Conversely, we also found that 40% of species exhibited no ITV in δ13C and 35% of species exhibited no ITV in δ15N, suggesting that some species are under stronger evolutionary control. However, we only found a modest signal of phylogenetic conservatism in δ13C and no phylogenetic signal in δ15N suggesting that shared ancestry is a weaker driver of tundra wide variation in stable isotopes. Together, our results suggest that both evolutionary history and local environmental conditions play a role in determining variation in δ13C and δ15N and that considering both factors can help with interpreting isotope patterns in nature and with predicting which species may be able to respond to rapidly changing environmental conditions.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Markéta Mejdová ◽  
Jiří Dušek ◽  
Lenka Foltýnová ◽  
Lenka Macálková ◽  
Hana Čížková

AbstractThe study estimates the parameters of the photosynthesis–irradiance relationship (PN/I) of a sedge-grass marsh (Czech Republic, Europe), represented as an active “green” surface—a hypothetical “big-leaf”. Photosynthetic parameters of the “big-leaf” are based on in situ measurements of the leaf PN/I curves of the dominant plant species. The non-rectangular hyperbola was selected as the best model for fitting the PN/I relationships. The plant species had different parameters of this relationship. The highest light-saturated rate of photosynthesis (Asat) was recorded for Glyceria maxima and Acorus calamus followed by Carex acuta and Phalaris arundinacea. The lowest Asat was recorded for Calamagrostis canescens. The parameters of the PN/I relationship were calculated also for different growth periods. The highest Asat was calculated for the spring period followed by the summer and autumn periods. The effect of the species composition of the local plant community on the photosynthetic parameters of the “big-leaf” was addressed by introducing both real (recorded) and hypothetical species compositions corresponding to “wet” and “dry” hydrological conditions. We can conclude that the species composition (or diversity) is essential for reaching a high Asat of the “big-leaf ”representing the sedge-grass marsh in different growth periods.


2021 ◽  
Vol 164 ◽  
pp. 112007
Author(s):  
Dan Wu ◽  
Fenfen Zhang ◽  
Xiaodi Zhang ◽  
Xiubao Li ◽  
Hui Huang ◽  
...  

Oecologia ◽  
2017 ◽  
Vol 183 (4) ◽  
pp. 1155-1165 ◽  
Author(s):  
Scott J. Meiners ◽  
Kelsey K. Phipps ◽  
Thomas H. Pendergast ◽  
Thomas Canam ◽  
Walter P. Carson

2018 ◽  
Vol 9 ◽  
Author(s):  
Kadiya Calderón ◽  
Laurent Philippot ◽  
Florian Bizouard ◽  
Marie-Christine Breuil ◽  
David Bru ◽  
...  

Pedobiologia ◽  
2017 ◽  
Vol 65 ◽  
pp. 68-76 ◽  
Author(s):  
Peng Wang ◽  
Jasper van Ruijven ◽  
Monique M.P.D. Heijmans ◽  
Frank Berendse ◽  
Ayal Maksimov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document