Boreal forest carbon exchange and growth recovery after the summer 2018 drought

Author(s):  
Maj-Lena Linderson ◽  
Jutta Holst ◽  
Michal Heliasz ◽  
Leif Klemedtsson ◽  
Anne Klosterhalfen ◽  
...  

<p>In summer 2018, Northern Europe experienced an extreme summer drought in combination with unusually high temperatures, which had a substantial impact on agricultural yields as well as on forest growth conditions in various ways. An ongoing study, using ICOS and other forest ecosystem stations in the Nordic region, shows that the drought dramatically decreased NEP in the southern Scandinavian and Baltic region, almost nullifying the carbon sinks in some of the forests. However, some of the forests that not were exposed to the most extreme drought actually increased their NEP because of the high evaporative demand. Such severe conditions during a single year could be expected to influence a forest over several following years. Reduced tree storage of carbohydrates leads to a changed carbon allocation pattern in spring that may affect both the woody growth and the resistance to pests. It is thus important to reveal the impact of such climatic events over a longer period.    </p><p>This study aims at assessing the carry-over effects of the extreme weather conditions on the carbon fluxes and the forest growth to the year after the event, 2019. The base of the analysis will be eddy covariance data combined with tree ring time series from measurement stations that has been shown to be significantly affected by the drought through reduced carbon fluxes: the spruce forests Hyltemossa and Skogaryd and the mixed forests Norunda, Svartberget, Soontaga and Rumperöd. The eddy covariance and tree ring data will be used to assess the forest ecosystem carbon fluxes and growth recovery in 2019 by comparisons to earlier normal years and extreme events.</p>

2021 ◽  
Author(s):  
Maj-Lena Linderson ◽  
Jutta Holst ◽  
Johannes Edvardsson ◽  
Michal Heliasz ◽  
Leif Klemedtsson ◽  
...  

<p>In summer 2018, Northern Europe experienced an extreme summer drought in combination with unusually high temperatures, which had a substantial impact on agricultural yields as well as on forest growth conditions in various ways. An earlier study, using ICOS RI (Integrated Carbon Observation Research Infrastructure) stations and other forest ecosystem stations in the Nordic region, shows that the drought dramatically decreased NEP in the southern Scandinavian and Baltic region, almost nullifying the carbon sinks in some of the forests [1]. Such severe conditions during a single year could be expected to influence a forest over following several years. Reduced tree storage of carbohydrates leads to a changed carbon allocation pattern in spring that may affect both the woody growth and pests' resistance. It is thus important to reveal the impact of such climatic events over a more extended period.    </p><p>This study aims at assessing the carry-over effects of the extreme weather conditions on the carbon and water fluxes and the forest growth to the years after the event. The analysis is based on measurement from the stations shown to be significantly affected by the drought through reduced carbon fluxes in 2018: the spruce forests Hyltemossa and Skogaryd and the mixed forests Norunda, Svartberget, Soontaga and Rumperöd. The ecosystem carbon and water fluxes will, together with tree-ring width data, be used to assess the carbon and water exchange and growth recovery in the years after the extreme 2018 drought (2019 and 2020) by comparisons to earlier normal years and extreme events.</p><p>[1] Lindroth, A., et al. (2020): Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018 Phil. Trans. R. Soc. B37520190516 https://doi.org/10.1098/rstb.2019.0516</p>


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


2020 ◽  
Author(s):  
Evelien van Dijk ◽  
Claudia Timmreck ◽  
Johann Jungclaus ◽  
Stephan Lorenz ◽  
Manon Bajard ◽  
...  

<p>The mid of the 6<sup>th</sup> century is an outstanding period and started with an unusual cold period that lasted several years to decades, due to the 536/540 CE double eruption event, with the strongest decadal volcanic forcing in the last 2000 years. Evidence from multiple tree ring records from the Alps to the Altai Mountains in Russia identified a centennial cooling lasting from 536 up to 660 CE. A previous Earth System Model (ESM) study with reconstructed volcanic forcing covering 535-550 CE like conditions already found that the double eruption led to a global decrease in temperature and an increase in Arctic sea-ice for at least a decade. However, the simulations were too short to fully investigate the multi-decadal cooling event and the atmospheric forcing from this double volcanic eruption alone may not be enough to sustain such a prolonged cooling. To better understand forced versus internal decadal climate variability in the first millennium we have performed mid 6<sup>th</sup> century ensemble simulations with the MPI-ESM1.2 for the 520-680 CE period. The ensemble consists of 10 realizations, which were branched of the MPI-ESM1.2 PMIP4 Past2k run, including the evolv2k volcanic forcing.</p><p>Here, we present results of this new set of the 6<sup>th</sup>-7<sup>th</sup> century MPI-ESM simulations in comparison to paleo-proxies. Summer surface temperatures are analyzed and compared with available tree-ring data, which fits very well for the entire 160 year period. As part of the VIKINGS project, special focus is placed on the impact of the 536/540 CE double volcanic eruption event on the surface climate in the Northern Hemisphere, in particular Scandinavia, Northern Europe and Siberia. The goal is to also compare the model data with new tree-ring and lake sediment proxies from southeastern Norway. Detailed comparison with proxy data will allow us to better understand the regional and seasonal climate variations of the 6<sup>th</sup>-7<sup>th</sup> century. Duration, strength and the possible mechanism for a long lasting volcanic induced cooling will be discussed.</p>


1988 ◽  
Vol 18 (4) ◽  
pp. 385-390 ◽  
Author(s):  
Kenneth D. Kimball ◽  
MaryBeth Keifer

The appropriateness of relating spatially proximate (40-km radius) temperature and precipitation data from different elevations to montane forest growth patterns was investigated for Mount Washington, New Hampshire. Monthly mean temperature and total precipitation data (1933–1983) were correlated (p < 0.05) among all pairs of meteorological stations (280, 420, 610, 1915 m and regional averages) on or near Mount Washington. The unexplained variance (1 − r2) for precipitation comparisons between meteorological stations was greater relative to temperature. When correlated with the average tree-ring index chronology of 90 red spruce trees on Mount Washington (800–1200 m), the monthly temperature data yielded similar correlative patterns among the four meteorological stations. However, the monthly temperature data from the meteorological stations (610 and 1915 m) most proximate to the montane forest study site were correlated (p < 0.10) with the tree-ring indices for two to three times as many months as the temperature data from the lower elevations. There was no consistency in correlative results of tree-ring indices with monthly precipitation data among the four meteorological stations. However, precipitation measurements and Palmer drought indices are poor indicators of moisture availability in montane forests. We conclude that spatially proximate, low elevation temperature data can underestimate correlative relationships between temperature and montane tree-ring data in the northeastern United States.


2007 ◽  
Vol 246 (2-3) ◽  
pp. 251-263 ◽  
Author(s):  
Sophie Rickebusch ◽  
Heike Lischke ◽  
Harald Bugmann ◽  
Antoine Guisan ◽  
Niklaus E. Zimmermann

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1765
Author(s):  
Liliana V. Belokopytova ◽  
Dina F. Zhirnova ◽  
David M. Meko ◽  
Elena A. Babushkina ◽  
Eugene A. Vaganov ◽  
...  

Dendroclimatology has focused mainly on the tree growth response to atmospheric variables. However, the roots of trees directly sense the “underground climate,” which can be expected to be no less important to tree growth. Data from two meteorological stations approximately 140 km apart in southern Siberia were applied to characterize the spatiotemporal dynamics of soil temperature and the statistical relationships of soil temperature to the aboveground climate and tree-ring width (TRW) chronologies of Larix sibirica Ledeb. from three forest–steppe stands. Correlation analysis revealed a depth-dependent delay in the maximum correlation of TRW with soil temperature. Temperatures of both the air and soil (depths 20–80 cm) were shown to have strong and temporally stable correlations between stations. The maximum air temperature is inferred to have the most substantial impact during July–September (R = −0.46–−0.64) and early winter (R = 0.39–0.52). Tree-ring indices reached a maximum correlation with soil temperature at a depth of 40 cm (R = −0.49–−0.59 at 40 cm) during April–August. High correlations are favored by similar soil characteristics at meteorological stations and tree-ring sites. Cluster analysis of climate correlations for individual trees based on the K-means revealed groupings of trees driven by microsite conditions, competition, and age. The results support a possible advantage of soil temperature over air temperature for dendroclimatic analysis of larch growth in semiarid conditions during specific seasons.


2020 ◽  
Author(s):  
Shweta Kumari ◽  
Mark A Adams

&lt;p&gt;Variability in precipitation and temperature are key markers of climate change. Extreme events like heat waves, droughts, frosts, wind storms, flooding rains and fires greatly affect ecosystem and terrestrial carbon balance. Tropical regions in particular make strong contributions to the global carbon cycle and are the focus of our research. Our initial analysis confirmed the long-known pattern of large variability in rainfall in the tropical southern hemisphere (i.e. between the Tropic of Capricorn and the Equator) w.r.t. the north, with less variation in temperature between the hemispheres. In the follow-up analysis, we focus on exchanges of carbon and water and water use efficiency, based on 39 eddy covariance flux sites which represent 25 years of data across the tropics. Our working hypothesis is that long-term increases in temperature and significant changes (+/-) in rainfall will be reflected in changes in water use efficiency and cropping period, albeit with greater spatial and temporal variation in the south than in the north. We are also investigating relationships between water use efficiency of tropical regions calculated using eddy covariance flux data, with that calculated using tree ring data. We seek to combine methodologies that can help drive our understanding of the impact of climate change on water use efficiency of tropical regions.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;&lt;span&gt;Keywords: &lt;/span&gt;&lt;/strong&gt;&lt;span&gt;Eddy covariance, Tropics, Water use efficiency, Carbon cycle, Tree ring data&lt;/span&gt;&lt;/p&gt;


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 454
Author(s):  
Bin Wang ◽  
Mingze Li ◽  
Wenyi Fan ◽  
Ying Yu ◽  
Weiwei Jia

Although CO2 fertilization on plant growth has been repeatedly modeled to be the main reason for the current changes in the terrestrial carbon sink at the global scale, there have been controversial findings on the CO2 fertilization effects on forests from tree-ring analyses. In this study, we employed conventional dendrochronological tree-ring datasets from Northeast China, to detect the effect of CO2 fertilization on Larix gmelinii growth from 1950 to 2010. Among four sites, there were two sites exhibiting a significant residual growth enhancement at a 90% confidence level after removing the size, age and climaterelated trends of tree-ring indices. In addition, we found consistency (R from 0.26 to 0.33, p < 0.1) between the high frequency CO2 fluctuation and residual growth indices at two of the four sites during the common period. A biogeochemical model was used to quantitatively predict the contribution of elevated atmospheric CO2 on accumulated residual growth enhancement. As found in the tree-ring data, 14% of the residual growth was attributed to the CO2 fertilization effect, while climate was responsible for approximately the remainding 86%.


Author(s):  
Shahid Mohommad ◽  
Shambhu Prasad Joshi

Climate change is an inevitable process impacting the forest ecosystem. Various impacts like treeline shift, forest fires, and Species distribution are due to the effect of climate change. Green House Gases concentration in the atmosphere is increasing day by day due to anthropogenic activities. The pace of climate change is very alarming which will have the substantial impact on the forest ecosystem. Role of remote sensing and geographic information system in observing the forest ecosystem was reviewed. Spatio-temporal analysis of change in forest structure can be proficiently done with the help of remote sensing and geographic information system. Climate Change Mitigation programmes like Reducing Emissions from Deforestation and Forest Degradation (REDD-plus) can be implemented with the help of remote sensing and geographic information system. Baseline data generation using remote sensing and geographic information system can be useful in designing the policies for forest management and monitoring.


2004 ◽  
Vol 62 (2) ◽  
pp. 126-133 ◽  
Author(s):  
Mukhtar M. Naurzbaev ◽  
Malcolm K. Hughes ◽  
Eugene A. Vaganov

Regional growth curves (RGCs) have been recently used to provide a new basis for removing nonclimatic trend from tree-ring data. Here we propose a different use for RGCs and explore their properties along two transects, one meridional and the other elevational. RGCs consisting of mean ring width plotted against cambial age were developed for larch samples from 34 sites along a meridional transect (55–72°N) in central Siberia, and for 24 sites on an elevational gradient (1120 and 2350 m a.s.l.) in Tuva and neighboring Mongolia at approximately 51°N. There are systematic gradients of the parameters of the RGCs, such as I0-maximum tree-ring width near pith, and Imin, the asymptotic value of tree-ring width in old trees. They are smaller at higher latitude and elevation. Annual mean temperature and mean May–September temperature are highly correlated with latitude here, and hence RGC parameters are correlated with these climatic variables. Correlations with precipitation are more complex, and contradictory between meridional and elevational transects. The presence of a similar gradient in the elevational transect is consistent with temperature being the causal factor for both gradients, rather than, for example, latitude-dependent patterns of seasonal photoperiod change. Taking ring measurements from collections of relict and subfossil wood, the RGC–latitude and RGC–temperature relationships are used to estimate paleo-temperatures on centennial time scales. These estimates are consistent with earlier "traditional" dendroclimatic approaches, and with independent information on the northern extent of forest growth in the early mid-Holocene. It may be possible to use this same approach to make estimates of century-scale paleo-temperatures in other regions where abundant relict wood is present.


Sign in / Sign up

Export Citation Format

Share Document