Greenhouse gas emissions mitigation with alternate wetting and drying irrigation of rice agriculture

Author(s):  
Benjamin R.K. Runkle ◽  
Arlene Adviento-Borbe ◽  
Michele L. Reba ◽  
Beatriz Moreno-García ◽  
Sandhya Karki ◽  
...  

<p>Rice production contributes roughly 11% of global CH4 anthropogenic emissions while producing food for over 3 billion people. The alternate wetting and drying (AWD) irrigation practice for rice has the potential to conserve water while reducing CH<sub>4</sub> emissions through the deliberate, periodic introduction of aerobic soil conditions. Our work in the US Mid-South rice production region has demonstrated, using the eddy covariance method on adjacent fields, that AWD can reduce field CH<sub>4</sub> emissions by about 66% without impacting yield. In any strategy, CO<sub>2</sub> and N<sub>2</sub>O emissions should also be monitored to take advantage of the high carbon sequestration potential of rice and low potential N<sub>2</sub>O emissions. Careful water and fertilizer management can theoretically keep N<sub>2</sub>O emissions low. All three gases should be managed together, while sustaining or improving harvest yield, to create a sustainable rice production system.</p><p> </p><p>We now present 5 years of closed chamber measurements of N<sub>2</sub>O and CH<sub>4</sub> and compare them to the eddy covariance measurements of CH<sub>4</sub> and CO<sub>2</sub> to derive a more thorough perspective on the net greenhouse gas (GHG) emissions or global warming potential basis of rice production from the highly productive, mechanized, humid, US Mid-South. Global warming potential of GHG emissions from rice systems was dominated by CH<sub>4</sub> emissions (74 to 100%), hence mitigating efforts need to focus on CH<sub>4</sub> emissions. Greater reduction of CH<sub>4</sub> emissions can be achieved by proper AWD management practice combined with adequate N fertilization. We end with a comment on the upcoming challenge of how to sequester CO<sub>2</sub> uptake as soil organic matter via litter incorporation without increasing CH<sub>4</sub> emissions. </p>

Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 202 ◽  
Author(s):  
Aung Zaw Oo ◽  
Shigeto Sudo ◽  
Kazuyuki Inubushi ◽  
Umamageswari Chellappan ◽  
Akinori Yamamoto ◽  
...  

Water-intensive systems of rice cultivation are facing major challenges to increase rice grain yield under conditions of water scarcity while also reducing greenhouse gas (GHG) emissions. The adoption of effective irrigation strategies in the paddy rice system is one of the most promising options for mitigating GHG emissions while maintaining high crop yields. To evaluate the effect of different alternate wetting and drying (AWD) irrigation strategies on GHG emissions from paddy rice in dry and wet seasons, a field experiment was conducted at the Tamil Nadu Rice Research Institute (TRRI), Aduthurai, Tamil Nadu, India. Four irrigation treatments were included: One-AWD (one early drying period), Two-AWD (two early drying periods), Full-AWD (wetting and drying cycles throughout the rice season), and CF (continuous flooding). Different rice varieties were also tested in the experiment. In this study, we emphasized one factor (irrigation effect) that affects the dependent variable. The results show that early AWD treatments reduced methane (CH4) emissions by 35.7 to 51.5% in dry season and 18.5 to 20.1% in wet season, while full-AWD practice reduced CH4 emissions by 52.8 to 61.4% compared with CF. Full-AWD in dry season not only significantly reduced CH4 emission during that season, it also resulted in the decline of the early season emission in the succeeding wet season. Global warming potential (GWP) and yield-scaled GWP were reduced by early or full season AWD in both rice seasons. The GWP value from nitrous oxide (N2O) was relatively low compared to that from CH4 in both rice seasons. Rice yield was not affected by irrigation treatments although varietal differences in grain and straw yields were observed in both rice seasons. This study demonstrated that early season water managements are also effective in reducing CH4 and total GHG emissions without affecting rice yield.


Soil Research ◽  
2015 ◽  
Vol 53 (3) ◽  
pp. 298 ◽  
Author(s):  
Yupeng Wu ◽  
Tian Liu ◽  
Qi'an Peng ◽  
Muhammad Shaaban ◽  
Ronggui Hu

Many studies have been performed to compare different straw-returning methods that could provide environmental benefits. However, few studies have focused on the greenhouse gas emissions from straw returning under winter water-stored fields (flooded conditions) and winter fallow fields (non-flooded conditions), which are the common land use types after the rice harvest in southern China. Thus, in the present microcosm incubation experiment, CO2, CH4 and N2O emissions were compared under flooded and non-flooded soil conditions, following straw incorporation. Straw application stimulated CO2 cumulative emission, and this effect was exacerbated by flooding (1818 and 4271 mg kg–1 under non-flooded and flooded conditions, respectively). Although the application of straw can mitigate N2O cumulative emissions under flooded conditions (10 152 μg kg–1 without and –51 μg kg–1 with straw incorporation, respectively), higher CO2 and CH4 production was detected (4271 and 149.20 mg kg–1 for CO2 and CH4 cumulative emissions, respectively). In contrast, straw application under non-flooded conditions had a relatively low global warming potential value (1836 mg CO2 Eq kg–1). Consequently, winter fallow field is recommended after the integrated application of straw and nitrogen fertiliser because of its low global warming potential. However, different strategies may be required for long-term reduction in global warming potential values.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 614
Author(s):  
Hamidou Bah ◽  
Xiao Ren ◽  
Yanqiang Wang ◽  
Jialiang Tang ◽  
Bo Zhu

Characterizing greenhouse gas (GHG) emissions and global warming potential (GWP) has become a key step in the estimation of atmospheric GHG concentrations and their potential mitigation by cropland management. However, the impacts of organic amendments on GHG, GWP, and yield-scaled GWP on cropland have not been well documented. Here, we investigate four amendment treatments (no amendment, mineral fertilizers, and pig slurry or crop residue combined with mineral fertilizers) during a two-year field experiment in rain-fed wheat-maize cropping systems. The results show that the average annual cumulative methane (CH4) flux ranged from −2.60 to −2.97 kg·C·ha−1 while nitrous oxide (N2O) flux ranged from 0.44 to 4.58 kg·N·ha−1 across all four treatments. N2O emissions were significantly correlated with soil inorganic nitrogen (i.e., NH4+-N and NO3−-N), and soil dissolved organic carbon (DOC) during both the winter wheat and summer maize seasons. On average, organic amendments combined with mineral fertilizers increased the annual GWP by 26–74% and yield-scaled GWP by 19–71% compared to those under only mineral fertilizers application. This study indicates that the fertilization strategy for Eutric Regosols can shift from only mineral fertilizers to organic amendments combined with mineral fertilizers, which can help mitigate GHG emissions and GWP while maintaining crop yields.


2020 ◽  
Author(s):  
Ronley Canatoy ◽  
Seung Tak Jeong ◽  
Pil Joo Kim

<p>Biochar is a carbon-rich black stable solid substance that when utilized as soil amendment can effectively mitigate greenhouse gas (GHG) emission. However, during the pyrolysis process of organic feedstock (i.e. manure) greenhouse gases are released as the feedstock undergo thermochemical degradation. Many studies were reported with regards to the effectiveness of biochar to mitigate greenhouse gas emission and to maintain soil quality via carbon sequestration. However, no clear investigation was done regarding biochar utilization on reducing GHG emission in an integrated perspective that starts from pyrolysis (production) to field application (utilization). To evaluate the integrated influence of biochar utilization on the overall Global Warming Potential (GWP) and (Greenhouse Gas Intensity) GHGI at different temperature, the fluxes of GHGs during feedstock pyrolysis to soil application were calculated. The key components include GHGs released during production processes and biogenic GHG emissions taking place in the soil via short-term incubation experiment in lowland and upland condition treated with biochar pyrolyzed at different temperature. Highest pyrolysis temperature of 700<sup>o</sup>C emitted 6.92 Mg CO<sub>2</sub>-eq ton<sup>-1</sup> biochar, wherein 8.7% and 91.2% was contributed by Carbon dioxide (CO<sub>2</sub>) and Methane (CH<sub>4</sub>) effluxes, respectively, during pyrolysis. This GHG emission during pyrolysis at 700<sup>o</sup>C was 5.6, 2.2, and 1.5 times higher than at 400<sup>o</sup>C, 500<sup>o</sup>C and 600<sup>o</sup>C, respectively. Meanwhile, biochar produced at lowest temperature (Biochar400) when utilized as soil amendment emitted 43.4 and 38.2 Mg CO<sub>2</sub>-eq ha<sup>-1</sup> in lowland and upland condition, respectively. In addition, this emission value under lowland (and upland) condition was 1.38 (1.36), 1.51 (1.56) and 1.86 (1.91) times higher than Biochar500, Biochar600 and Biochar700, respectively. Combining the GWP during the production and the utilization processes in lowland and upland condition reveal that at 400<sup>o</sup>C emanates the lowest overall GWP of 93.3 and 88.1 Mg CO<sub>2</sub>-eq ha<sup>-1</sup>, respectively.  Moreover, under lowland (and upland) condition, overall GWP at 400<sup>o</sup>C was noted to be 65.7% (71.7%), 131.6% (140.4%) and 221.9% (237.1%), lower than at 500<sup>o</sup>C, 600<sup>o</sup>C and 700<sup>o</sup>C, respectively. In conclusion, the use of lower temperature during biomass pyrolysis and utilization of its derived biochar could be a practical approach to mitigate GHG emissions.</p><p> </p><p>Keywords: Biochar, Pyrolysis, Greenhouse gas, Methane, Global warming potential, Greenhouse gas intensity</p>


Sign in / Sign up

Export Citation Format

Share Document