Controls on stratigraphic variability in a semi-closed rift basin over the Late Quaternary, Gulf of Corinth, Greece

Author(s):  
Sofia Pechlivanidou ◽  
Spyros Sergiou ◽  
Maria Geraga ◽  
Robert Gawthorpe ◽  
Dimitra Antoniou ◽  
...  

<p>The Corinth Gulf is a semi-closed active rift basin, which alternated between marine and isolated/semi-isolated conditions as sea level fluctuated with respect to basin sills during Quaternary glacial/interglacial cycles. Results from the recent IODP Expedition 381 reveal cyclic variations of 10s-100s of kyr in sedimentation rates and basin paleoenvironment. In this study we investigate the controls on stratigraphic development of the Corinth basin during the last eustatic cycle and the Holocene based on core data from the IODP Expedition 381 Site M0079. We perform a multi-proxy analysis of the upper ~200 mbsf of core covering Marine Isotope Stages (MIS) 1-5 (i.e. last 130 kyr). Our analyses include grain size and micropaleontological (foraminifera) analyses at regular intervals (~0.5 m), Computed Tomography (CT-scanning) of selected u-channels and specific microscopic work (smear slides, SEM) on targeted samples. Our results show pronounced variability in sedimentation patterns during the isolated/semi-isolated phases compared to the marine intervals. Low density, thinly bedded and laminated muds alternating with high density homogenous mud beds and occasionally sandy, organic rich beds prevail during isolated/semi-isolated conditions. In contrast, homogenous and/or highly bioturbated successions characterize the marine sequences. The transitions from marine to isolated/semi-isolated conditions and vise-versa are often associated with authigenic carbonate deposition. Fine grained sediments (sand < 10%) dominate both the marine and the isolated sequences. Nevertheless, sandy turbidites (sand > 10%) are also present and are more often observed in the isolated phases, likely associated with climatic-driven changes in erosional processes onshore. Our analysis reveals short-lived isolated/semi-isolated sub-phases within the lower marine interval corresponding to the MIS5b and MIS5d lowstands. Short marine spikes also interrupt the isolated/semi-isolated conditions of the last glacial period indicating temporary sea level rises within MIS3. Overall, the marine intervals display significant paleoenvironmental differences although they share similar sedimentary patters. In particular, we observe more diverse palaeoceanographic conditions in the MIS5 marine sub-phases compared to the MIS1, especially regarding temperature and eutrophication levels of the water column.  </p>

Radiocarbon ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 83-99
Author(s):  
Daidu Fan ◽  
Shuai Shang ◽  
George Burr

ABSTRACTWe describe two coastal paleosols recovered in sediment cores from the Oujiang Delta, Southeast China. These provide useful benchmarks for past sea level change on the East China Sea coast. Radiocarbon (14C) dates on charcoal and plant matter show that one formed during Marine Isotope Stage 3 (MIS 3) and was exposed for perhaps 20 ka, during the Last Glacial Maximum. The other formed in the Early Holocene and was briefly exposed, during a period of fluctuating sea level. Similar paleosols have been described from the Changjiang (Yangtze) Delta, and at many other sites from the East China Sea. The MIS 3 paleosol records a regional relative sea level of about –27 m at the end of MIS 3. While this value is consistent with other paleo sea level estimates for the East China Sea region, it is much higher than predicted by eustatic sea level estimates.


1989 ◽  
Vol 32 (1) ◽  
pp. 36-50 ◽  
Author(s):  
C. Perissoratis ◽  
D. Mitropoulos

AbstractA dense network of 3.5 kHz and Uniboom seismic profiles revealed the geological evolution of the Ierissos-Alexandroupolis Shelf area of the northern Aegean during the latest sea-level rise. Near the end of the Pleistocene, ca. 14,000 yr B.P., the sea was at about − 120 m, and almost 5300 km2 of shelf was exposed to subaerial erosion. Two permanet lakes existed in the Ierissos and Kavalla Gulfs, as well as a number of ephemeral lakes scattered throughout the rest of the area. Kavalla Gulf was drained by the Nestos River which joined the Strymon River at the outer Strymonikos Plateau. On the flat Samothraki Plateau were dune fields, marshes, and a number of minor seasonal rivers, while the Evros River flowed east of the plateau. By ca. 13,000 yr B.P. the sea had risen to − 70 m and covered 30% of the previously exposed shelf. The lakes at Ierissos and Strymonikos Gulfs were shallower and the sea approached to within about 5 km of them. Kavalla Gulf and the adjacent eastern Strymonikos Plateau lay 10 m above sea level, while the sea intruded along river mouths at the Samothraki Plateau. During this transgression of the sea river-bed gravels and sands were covered by silts and clays. At the Pleistocene-Holocene transition, ca. 10,500 yr B.P., the sea lay at about − 50 m and in areas of steep slope the coast was close to its present position. At Kavalla Gulf, the sea advanced along the paleochannel of the Nestos River, and the island of Samothraki was separated from the mainland. By ca. 7500 yr B.P. the sea was only 15 m below its present level and the northeastern Aegean shelf assumed nearly its present morphology. The Nestos River changed course to the east and Thassos Island was separated from the mainland. Coarse sediment formed wedges nearshore, whereas fine-grained sediments were distributed widely by current action. In many areas, relict sediments are present.


2014 ◽  
Vol 82 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Thomas Stevens ◽  
Matthew J. Jestico ◽  
Graham Evans ◽  
Anthony Kirkham

AbstractAccurate sea-level reconstruction is critical in understanding the drivers of coastal evolution. Inliers of shallow marine limestone and aeolianite are exposed as zeugen (carbonate-capped erosional remnants) on the southern coast of the Arabian/Persian Gulf. These have generally been accepted as evidence of a eustatically driven, last-interglacial relative sea-level highstand preceded by a penultimate glacial-age lowstand. Instead, recent optically stimulated luminescence (OSL) dating suggests a last glacial age for these deposits, requiring >100 m of uplift since the last glacial maximum in order to keep pace with eustatic sea-level rise and implying the need for a wholesale revision of tectonic, stratigraphic and sea-level histories of the Gulf. These two hypotheses have radically different implications for regional neotectonics and land–sea distribution histories. Here we test these hypotheses using OSL dating of the zeugen formations. These new ages are remarkably consistent with earlier interpretations of the formations being last interglacial or older in age, showing that tectonic movements are negligible and eustatic sea-level variations are responsible for local sea-level changes in the Gulf. The cause of the large age differences between recent studies is unclear, although it appears related to large differences in the measured accumulated dose in different OSL samples.


2002 ◽  
Vol 58 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Daniel R. Muhs

AbstractThe last interglacial period has a timing and duration that can be estimated from U-series dating of emergent, coral-bearing deposits on tectonically stable coastlines. High-precision dating from Bermuda, the Bahamas, Hawaii, and Australia suggests that the last interglacial period had a sea level at least as high as present from ∼128,000 to 116,000 yr B.P. Sea level reached a near-present level more quickly after the close of the penultimate glacial period than at the close of the last glacial period and the duration of high sea level is longer than that implied by the deep-sea record.


2009 ◽  
Vol 72 (2) ◽  
pp. 258-264 ◽  
Author(s):  
Alastair J. Potts ◽  
Jeremy J. Midgley ◽  
Chris Harris

AbstractLate Quaternary terrestrial climate records from the semi-arid zone of the Western Cape of South Africa are rare. However, palaeoenvironmental information may be inferred from ancient termite mounds of the region. Calcrete lenses in these mounds have δ13C and δ18O values that show systematic changes with radiocarbon dates, which range from 33,629–36,709 to 21,676–23,256 cal yr BP. These dates confirm that these heuweltjies had been present in the landscape since the last glacial period. The decrease in δ13C and δ18O from 33,629–36,709 to 21,676–23,256 cal yr BP indicates that climate information is recorded by the calcretes. It is suggested that a progressive decline in air temperature and an increase in moisture availability, and a decline in abundance of C4 or CAM plants, occurred in the region during the time heuweltjie calcite precipitated.


2021 ◽  
Author(s):  
Natacha Fabregas ◽  
Sofia Pechlivanidou ◽  
Robert Gawthorpe ◽  
Mary Ford ◽  
Richard Collier

<p>Relatively few detailed studies exist of rift axis depositional systems and the controls on their sedimentology and stratigraphy. Cores from the IODP Expedition 381 (Corinth Active Rift Development) provide a continuous high resolution stratigraphic record of depositional processes operating within this deep-water rift. During the Late Quaternary, the Gulf of Corinth alternated between marine and isolated/non-marine conditions due to intermittent connection with the open ocean across a sill driven by climate-related sea-level fluctuations. In this study we performed bed scale logging of the sedimentary deposits within the eastern Gulf of Corinth in order to understand key controls on sedimentation during the Late Quaternary. High resolution, mm-scale analysis was performed on the first 300 m of core from Site M0079 that records the last two glacial-interglacial cycles and the Holocene (Marine Isotope Stages 1 to 7). The succession is dominated by fine-grained gravity flows (event beds) and hemipelagic sediments. Event beds result from discrete events that interrupt/overprint ongoing low energy sedimentation. As such, these have been abstracted in order to define three main sedimentary unit types. Unit-scale logging was extended to the rest of the succession and to the other drill sites to build a stratigraphic and depositional model covering the last ca. 700 kyr of deposition. Our results show that during interglacial periods (i.e. marine conditions), the sediment record consists mainly of highly bioturbated mud with rarer occurrences of coarser grained sediment. Sedimentary structures and identifiable event beds have largely been lost due to the high degree of bioturbation. In contrast, during glacial periods (i.e. isolated/semi-isolated lake conditions) the deposits are well bedded with a low bioturbation index and background muds alternate with event beds. Transitional strata, between marine and non-marine units, show finely laminated beds rich in aragonite, often becoming more organic rich toward the top. The deepest parts of the core penetrate slumped units and thicker gravity flow deposits. This study allows us to recognise the response to high frequency climatic fluctuations recorded in the sedimentary succession of this deep-water rift.</p>


1999 ◽  
Vol 28 ◽  
pp. 195-201 ◽  
Author(s):  
C. Ó Cofaigh ◽  
D.S. Lemman ◽  
D.J.A. Evans ◽  
J. Bednarski

AbstractModern terrestrial glaciers in the Canadian High Arctic range from polythermal to cold-based. Where polythermal glaciers override thick unconsolidated sediment, longitudinal compression and glaciotectonic thrusting produce thrust-block moraines. In contrast, the dominant geomorphic record of cold-based glaciers consists of lateral and proglacial meltwater channels. Geomorphic and sedimentary evidence indicates that late Quaternary fiord glaciers were also characterized by variations in basal thermal regime. Erratic dispersal trains and striated bedrock record the flow of warm- based ice during the Last Glacial Maximum. Emergent grounding-line fans and morainal banks, deposited during deglaciation, consist of heterogeneous glaciomarine deposits that record well-developed subglacial drainage and high sedimentation rates. However, in other fiords, subaqueous outwash and fine-grained glaciomarine deposits are absent and deglaciation is recorded by lateral meltwater channels graded to raised glaciomarine deltas, suggesting these glaciers were predominantly cold-based during retreat. Regionally, deglacial depocentres are located at pinning points within fiords and a prominent belt of glaciogenic landforms at fiord heads records stabilization of ice margins during early Holocene retreat, rather than the limit of late Quaternary glaciation. Collectively, these observations refute previous reconstructions which inferred a climatically controlled switch from cold- to warm-based thermal conditions in fiord glaciers during early Holocene deglaciation, and indicate that the dominant controls on thermal regime were glaciological.


2006 ◽  
Vol 43 (3) ◽  
pp. 323-337 ◽  
Author(s):  
Daniel R Muhs ◽  
James R Budahn

Loess is extensive in central Alaska, but there are uncertainties about its source and the direction of paleo winds that deposited it. Both northerly and southerly winds have been inferred. The most likely sources of loess are the Tanana River (south), the Nenana River (southeast), and the Yukon River (north). Late Quaternary loess in central Alaska has immobile trace-element compositions (Cr/Sc, Th/Ta, Th/Sc, Th/U, Eu/Eu*, GdN/YbN) that indicate derivation mostly from the Tanana River. However, other ratios (As/Sb, Zr/Hf, LaN/YbN) and quantitative modeling indicate that the Yukon River was also a source. During the last glacial period, there may have been a longer residence time of the Siberian and Canadian high-pressure cells, along with a strengthened Aleutian low-pressure cell. This would have generated regional-scale northeasterly winds and explains derivation of loess from the Yukon River. However, superimposed upon this synoptic-scale circulation, there may have been strong, southerly katabatic winds from expanded glaciers on the northern flank of the Alaska Range. These winds could have provided eolian silt from the Tanana River. Yukon River and Tanana River sediments are highly calcareous, whereas Fairbanks-area loess is not. This suggests that carbonate leaching in loess kept ahead of sedimentation and that late Quaternary loess in central Alaska was deposited relatively slowly.


2012 ◽  
Vol 8 (5) ◽  
pp. 4941-4956
Author(s):  
A. F. Flinders

Abstract. Measurements of δ18O in the Greenland Ice Sheet Project 2 (GISP2) ice-core from Summit, Greenland, show repeated temporal variations associated with rapid warming events throughout the last glacial period of the Pleistocene-10–110 kya. The majority of these warming events are preceded in the ice-core record by an increased concentration of insoluble micro-particulate sulfate, indicative of increases in global volcanism. Wavelet analysis of ice-core and marine-sediment records show a repeated 5000–6000 yr periodicity in both volcanic SO4 and δ18O ice records, as well as a 5000–8000 yr cycle in the lithic concentration of ice-rafted debris, atmospheric CO2 concentration, and a database of late Quaternary volcanic eruptions. Increasing concentrations in atmospheric CO2 and CH4 initiated during periods of increased volcanism, peaking during a warm transition, reflect a volcanic-atmospheric-deglaciation feedback, regulated by meridional overturning current-shutdown related cooling.


Sign in / Sign up

Export Citation Format

Share Document