Mediterranean Marine heatwaves: On the comparison of the physical drivers behind the 2003 and 2015 events

Author(s):  
Sofia Darmaraki ◽  
Samuel Somot ◽  
Robin Waldman ◽  
Florence Sevault ◽  
Pierre Nabat ◽  
...  

<p>Over the last decade, an intensification of extreme warm temperature events, termed as marine heatwaves (MHWs), has been reported in the Mediterranean Sea, itself a “Hot Spot” region for climate change. In the summer of 2003, a major MHW occurred in the Mediterranean with abnormal surface temperature anomalies of 2-3 Cº persisting for over a month. In 2015, an undocumented but more intense summer MHW affected almost the entire Mediterranean Sea with regional temperatures anomalies reaching 4-5 Cº. Here, we apply a MHW detection algorithm for long-lasting and large-scale summer events, on the hindcast output of a fully-coupled regional climate model (RCSM). We first examine the spatial variability and temporal evolution of both the 2003 and 2015 events. Then a basin-scale analysis of the mixed layer heat budget during each MHW is performed. The ocean and atmospheric components’ contribution is investigated separately during the onset, peak, and decay phases of both events, in order to disentangle the dominant physical processes behind each event. On the large-scale, our results indicate a key role of the wind forcing and the air-sea heat fluxes, while advection processes become more important at local scales. This study provides a comparison of the underlying mechanisms behind the two most intense MHW detected in the Mediterranean Sea during the last decade, constituting key information for the marine ecosystems of the region.</p>

2021 ◽  
Author(s):  
Roman Brogli ◽  
Silje Lund Sørland ◽  
Nico Kröner ◽  
Christoph Schär

<div> <p><span>It has long been recognized that the Mediterranean is a ‘hot-spot’ of climate change. The model-projected year-round precipitation decline and amplified summer warming are among the leading causes of the vulnerability of the Mediterranean to greenhouse gas-driven warming. We investigate large-scale drivers influencing both the Mediterranean drying and summer warming in regional climate simulations. To isolate the influence of multiple large-scale drivers, we sequentially add the respective drivers from global models to regional climate model simulations. Additionally, we confirm the robustness of our results across multiple ensembles of global and regional climate simulations.</span></p> </div><div> <p><span>We will present in detail how changes in the atmospheric stratification are key in causing the amplified Mediterranean summer warming. Together with the land-ocean warming contrast, stratification changes also drive the summer precipitation decline. Summer circulation changes generally have a surprisingly small influence on the changing Mediterranean summer climate. In contrast, changes in the circulation are the primary driver for the projected winter precipitation decline. Since land-ocean contrast and stratification changes are more robust in global climate simulations than circulation changes, we argue that the uncertainty associated with the projected climate change patterns should be considered smaller in summer than in winter.</span></p> </div><div> <p><span>References:</span></p> </div><div> <p><span>Brogli, R., S. L. Sørland, N. Kröner, and C. Schär, 2019: Causes of future Mediterranean precipitation decline depend on the season. Environmental Research Letters, 14, 114017, doi:10.1088/1748-9326/ab4438.</span></p> </div><div> <p><span>Brogli, R., N. Kröner, S. L. Sørland, D. Lüthi and C. Schär, 2019: The Role of Hadley Circulation and Lapse-Rate Changes for the Future European Summer Climate. Journal of Climate, 32, 385-404, doi:10.1175/JCLI-D-18-0431.1</span></p> </div>


2021 ◽  
Author(s):  
Nicolaj Hansen ◽  
Peter L. Langen ◽  
Fredrik Boberg ◽  
Rene Forsberg ◽  
Sebastian B. Simonsen ◽  
...  

Abstract. Antarctic surface mass balance (SMB) is largely determined by precipitation over the continent and subject to regional climate variability related to the Southern Annular Mode (SAM) and other climatic drivers at the large scale. Locally however, firn and snow pack processes are important in determining SMB and the total mass balance of Antarctica and global sea level. Here, we examine factors that influence Antarctic SMB and attempt to reconcile the outcome with estimates for total mass balance determined from the GRACE satellites. This is done by having the regional climate model HIRHAM5 forcing two versions of an offline subsurface model, to estimate Antarctic ice sheet (AIS) SMB from 1980 to 2017. The Lagrangian subsurface model estimates AIS SMB of 2473.5 ± 114.4 Gt per year, while the Eulerian subsurface model variant results in slightly higher modelled SMB of 2564.8 ± 113.7 Gt per year. The majority of this difference in modelled SMB is due to melt and refreezing over ice shelves and demonstrates the importance of firn modelling in areas with substantial melt. Both the Eulerian and the Lagrangian SMB estimates are within uncertainty ranges of each other and within the range of other SMB studies. However, the Lagrangian version has better statistics when modelling the densities. There is a mean bias in modelled density of −24.0 ± 18.4 kg m−3 and −8.2 ± 15.3 kg m−3 for layers less than 550 kg m−3 for the Eulerian and Lagrangian framework, respectively. For layers with a density above 550 kg m−3 the bias is −31.7 ± 23.4 kg m−3 and −35.0 ± 23.7 kg m−3 for the Eulerian and Lagrangian framework, respectively. The mean firn 10 m temperature bias is 0.42–0.52 °C. Further, analysis of the relationship between SMB in individual drainage basins and the SAM, is carried out using a bootstrapping approach. This shows a robust relationship between SAM and SMB in half of the basins (13 out of 27). In general, when SAM is positive there is a lower SMB over the Plateau and a higher SMB on the westerly side of the Antarctic Peninsula, and vice versa when the SAM is negative. Finally, we compare the modelled SMB to GRACE data by subtracting the solid ice discharge, and find that there is a good agreement in East Antarctica, but large disagreements over the Antarctic Peninsula.There is a large difference between published estimates of discharge that make it challenging to use mass reconciliation in evaluating SMB models on the basin scale.


2016 ◽  
Vol 51 (3) ◽  
pp. 1041-1057 ◽  
Author(s):  
Miguel Ángel Gaertner ◽  
Juan Jesús González-Alemán ◽  
Raquel Romera ◽  
Marta Domínguez ◽  
Victoria Gil ◽  
...  

2020 ◽  
Author(s):  
Roman Brogli ◽  
Silje Lund Sørland ◽  
Nico Kröner ◽  
Christoph Schär

<p>The Mediterranean is among the global 'hot-spots' of climate change, where severe consequences of climate change are expected. Changes in the atmospheric water cycle are among the leading causes of the vulnerability of the Mediterranean to greenhouse gas-driven warming. Specifically, precipitation is projected to decrease year-round, which is expected to have major impacts on hydrology, biodiversity, agriculture, hydropower, and further economic sectors that rely on sufficient water supply.</p><p>We investigate possible causes of the Mediterranean drying in regional climate simulations. To isolate the influence of multiple large-scale drivers on the drying, we sequentially add the respective drivers from global models to regional climate model simulations. We show that the causes of the Mediterranean drying depend on the season. We will present in detail how the summer drying is driven by the land-ocean warming contrast, lapse-rate and other thermodynamic changes, while it only weakly depends on circulation changes. In contrast, changes in the circulation are the primary driver for the projected winter precipitation decline. Since land-ocean contrast, thermodynamic and lapse-rate changes are more robust in climate simulations than circulation changes, the uncertainty associated with the projected drying should be considered smaller in summer than in winter.</p><p>Reference: Brogli, R., S. L. Sørland, N. Kröner, and C. Schär, 2019: Causes of future Mediterranean precipitation decline depend on the season. Environmental Research Letters, 14, 114017, doi:10.1088/1748-9326/ab4438.</p>


2010 ◽  
Vol 23 (12) ◽  
pp. 3249-3281 ◽  
Author(s):  
Young-Oh Kwon ◽  
Michael A. Alexander ◽  
Nicholas A. Bond ◽  
Claude Frankignoul ◽  
Hisashi Nakamura ◽  
...  

Abstract Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.


2020 ◽  
Author(s):  
Vincent Coussin ◽  
Aurelie Penaud ◽  
Nathalie Combourieu-Nebout ◽  
Odile Peyron ◽  
Yannick Miras ◽  
...  

<p>Past and present oceanographic and climatic conditions along the Algerian coast involve complex mechanisms. Atlantic Ocean surface waters enter the Mediterranean Sea by the Gibraltar strait and become the Algerian current flowing along the North African coast forming a succession of eddies. Deep-water upwelling plumes is another recurrent feature of the ocean circulation along the Algerian margin. Past vegetation changes and the role of paleohydrological changes have been poorly described in this region. This work combines palynological (pollen and dinoflagellate cysts) and biomarker data to assess changing environmental and climatic conditions over the past 14 ka BP (late glacial and Holocene) acquired from the marine core MD04-2801 (Algerian coast, 2067 m water depth, Prisma cruise).</p><p>A total of 79 samples have been analyzed over the last 14 000 years BP. Palynological and organic biomarker proxy data were used to investigate the links between past sea surface temperature (SSTs) and hydrological changes on the observed regional environmental changes documented at centennial timescale resolution. Our data indicate (i) recurrent upwelling cells during relatively dry climatic conditions of the Younger Dryas (12.7 to 11.7 ka BP), the Early Holocene (11.7 to 8.2 ka BP) and from 6 ka BP onwards, (ii) an increase of fluvial discharges between 8.2 and 6 ka BP during the African Humid Period, and the concomitant colonization of coastlands by the Mediterranean forest. The comparison between our results and other western Mediterranean palynological records underlines the singularity of our results along the Algerian margin in terms of dinocyst assemblages and notably the over-representation of heterotrophic taxa. Palynological data shows direct links between continental dryness and marine hydrological conditions. Finally, we applied the Modern Analogue Technique to our pollen assemblages along the core in order to reconstruct seasonal and annual precipitations and temperatures and compare our local climatic patterns to regional climate signals at basin scale for the Holocene period.</p>


2021 ◽  
Vol 15 (9) ◽  
pp. 4315-4333
Author(s):  
Nicolaj Hansen ◽  
Peter L. Langen ◽  
Fredrik Boberg ◽  
Rene Forsberg ◽  
Sebastian B. Simonsen ◽  
...  

Abstract. Antarctic surface mass balance (SMB) is largely determined by precipitation over the continent and subject to regional climate variability related to the Southern Annular Mode (SAM) and other climatic drivers at the large scale. Locally however, firn and snowpack processes are important in determining SMB and the total mass balance of Antarctica and global sea level. Here, we examine factors that influence Antarctic SMB and attempt to reconcile the outcome with estimates for total mass balance determined from the GRACE satellites. This is done by having the regional climate model HIRHAM5 forcing two versions of an offline subsurface model, to estimate Antarctic ice sheet (AIS) SMB from 1980 to 2017. The Lagrangian subsurface model estimates Antarctic SMB of 2473.5±114.4 Gt yr−1, while the Eulerian subsurface model variant results in slightly higher modelled SMB of 2564.8±113.7 Gt yr−1. The majority of this difference in modelled SMB is due to melt and refreezing over ice shelves and demonstrates the importance of firn modelling in areas with substantial melt. Both the Eulerian and the Lagrangian SMB estimates are within uncertainty ranges of each other and within the range of other SMB studies. However, the Lagrangian version has better statistics when modelling the densities. Further, analysis of the relationship between SMB in individual drainage basins and the SAM is carried out using a bootstrapping approach. This shows a robust relationship between SAM and SMB in half of the basins (13 out of 27). In general, when SAM is positive there is a lower SMB over the plateau and a higher SMB on the westerly side of the Antarctic Peninsula, and vice versa when the SAM is negative. Finally, we compare the modelled SMB to GRACE data by subtracting the solid ice discharge, and we find that there is a good agreement in East Antarctica but large disagreements over the Antarctic Peninsula. There is a large difference between published estimates of discharge that make it challenging to use mass reconciliation in evaluating SMB models on the basin scale.


2010 ◽  
Vol 1 (1) ◽  
pp. 11 ◽  
Author(s):  
A. Bergamasco ◽  
P. Malanotte-Rizzoli

The Mediterranean Sea is an enclosed basin composed of two similar basins and different sub-basins. It is a concentration basin, where evaporation exceeds precipitation. In the surface layer there is an inflow of Atlantic water which is modified along its path to the Eastern basin. This transformation occurs through surface heat loss and evaporation specifically in the Levantine basin. The Mediterranean is furthermore the site of water mass formation processes, which can be studied experimentally because of their easy accessibility. There are two main reasons why the Mediterranean is important. The first one is the impact of the Mediterranean on the global thermohaline circulation, the second reason is that the Mediterranean basin can be considered as Laborartory for investigating processes occurring on the global scale of the world ocean. In this paper we want to provide a short historical review of the evolving knowledge of the Mediterranean circulation that has emerged from experimental investigations over the last decades. We start by describing the old picture of the basin circulation which had stationary, smooth large scale patterns. Then we show the major experiments that led to the discovery of the sub-basin scale circulation and its mesoscale features. We conclude with the dynamical discovery of EMT in the 1990s and the most exciting ongoing new research programmes.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Sign in / Sign up

Export Citation Format

Share Document