Peatland hydrological behavior with global warming

Author(s):  
Stefano Ferraris ◽  
Davide Canone ◽  
Davide Gisolo ◽  
Mario Putti ◽  
Pietro Teatini ◽  
...  

<p>A peat deposit close to Venice was monitored both in the field and in the lab (1) to investigate the hydrological response of peat soil to changing meteorological conditions in the frame of land subsidence assessment. The whole area is about 3 meters lower than the sea level and therefore subsidence is a major issue. Predictions highlighted the risk of an almost complete disappearance of the peat layer in this area during the next 50 years, due to the increased frequency of warmer periods. Unfortunately, despite the considerable impacts that are expected to affect peatland worldwide, only a few measured datasets are currently available to assess the response of a peat deposit to enhanced drying due to global warming.</p><p>The lab measurements were performed both at the pedon and at the core scale. An undisturbed peat monolith of approximately 0.7 m<sup>3</sup> was collected, transferred to the lab, and instrumented to monitor matric potential, water content, and total weight. This undisturbed peat lysimeter allows to monitor water content variations (both through the weight monitoring and time domain reflectometry sensors), and matric potential, with drier conditions with respect to the field campaign. A complete cycle of wetting and drainage was performed, raising the water table from the bottom to the top of the sample and down again. Additional measurements of matric potential and water content were collected by testing peat cores on a suction table.</p><p>A set of water retention curves was experimentally determined. They were derived for a range of  matric potential much broader than that experienced in situ . Variations were found, with respect to the field natural conditions, in the relations between the matric potential and the volumetric water content of different horizons as a result of the initial prolonged drying. Also, the hysteresis behaviours in the lab and in the field were different, with much wider loops in the lab conditions because of extended range of potential. Hydraulic non-equilibrium between the water content and water potential could also  be a possible cause, but further modelling work is necessary to assess it. The van Genuchten parameters were obtained for both wetting and drying, for modelling purposes.</p><p>(1) Previati et al. (2019), Hydrological Processes.</p>

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2626 ◽  
Author(s):  
Chao Chen ◽  
Xiaofei Yan ◽  
Qiang Xu ◽  
Song Yu ◽  
Yihan Ma ◽  
...  

Soil matric potential is an important parameter for agricultural and environmental research and applications. In this study, we developed a novel sensor to determine fast and in-situ the soil matric potential. The probe of the soil matric potential sensor comprises a perforated coaxial stainless steel cylinder filled with a porous material (gypsum). With a pre-determined gypsum water retention curve, the probe can determine the gypsum matric potential through measuring its water content. The matric potential of soil surrounding the probe is inferred by the reading of the sensor after the soil reaches a hydraulic equilibrium with the gypsum. The sensor was calibrated by determining the gypsum water retention curve using a pressure plate method and tested in three soil samples with different textures. The results showed that the novel sensor can determine the water retention curves of the three soil samples from saturated to dry when combined with a soil water content sensor. The novel sensor can respond fast to the changes of the soil matric potential due to its small volume. Future research could explore the application for agriculture field crop irrigation.


2010 ◽  
Vol 14 (10) ◽  
pp. 1787-1799 ◽  
Author(s):  
M. J. van der Ploeg ◽  
H. P. A. Gooren ◽  
G. Bakker ◽  
C. W. Hoogendam ◽  
C. Huiskes ◽  
...  

Abstract. Measuring soil water potentials is crucial to characterize vadose zone processes. Conventional tensiometers only measure until approximately −0.09 MPa, and indirect methods may suffer from the non-uniqueness in the relationship between matric potential and measured properties. Recently developed polymer tensiometers (POTs) are able to directly measure soil matric potentials until the theoretical wilting point (−1.6 MPa). By minimizing the volume of polymer solution inside the POT while maximizing the ceramic area in contact with that polymer solution, response times drop to acceptable ranges for laboratory and field conditions. Contact with the soil is drastically improved with the use of cone-shaped solid ceramics instead of flat ceramics. The comparison between measured potentials by polymer tensiometers and indirectly obtained potentials with time domain reflectometry highlights the risk of using the latter method at low water contents. By combining POT and time domain reflectometry readings in situ moisture retention curves can be measured over the range permitted by the measurement range of both POT and time domain reflectometry.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Mioko Ataka ◽  
Yuji Kominami ◽  
Takafumi Miyama ◽  
Kenichi Yoshimura ◽  
Mayuko Jomura ◽  
...  

Little is known about the wetting and drying processes of the litter layer (Llayer), likely because of technical difficulties inherent in nondestructive water content (WC) monitoring. We developed a method for continuously measuring the WC of leaf litter (the “LWC method”)in situusing capacitance sensors. To test variants of this approach, five (for the LWC_5) or ten (for the LWC_10 method)Quercus serrataleaves were attached around capacitance sensors. The output voltage used for each LWC method was linearly correlated with the gravimetric WC (LWC_5:R2=0.940; LWC_10:R2=0.942), producing different slopes for each calibration line. Forin situcontinuous measurements of WC in theLlayer, two sensors were used, one placed on top of theLlayer and the other at the boundary between theLand mineral layers. The average continuous WC of theLlayer was then calculated from the output voltage of the two sensors and the calibration function, and this value was linearly correlated with the gravimetric WC(R2=0.697). However, because theLlayer characteristics (e.g., thickness, water-holding capacity, and species composition) may differ among study sites, appropriate approaches for measuring this layer’s moisture properties may be needed.


2002 ◽  
Author(s):  
Shmuel Friedman ◽  
Jon Wraith ◽  
Dani Or

Time Domain Reflectometry (TDR) and other in-situ and remote sensing dielectric methods for determining the soil water content had become standard in both research and practice in the last two decades. Limitations of existing dielectric methods in some soils, and introduction of new agricultural measurement devices or approaches based on soil dielectric properties mandate improved understanding of the relationship between the measured effective permittivity (dielectric constant) and the soil water content. Mounting evidence indicates that consideration must be given not only to the volume fractions of soil constituents, as most mixing models assume, but also to soil attributes and ambient temperature in order to reduce errors in interpreting measured effective permittivities. The major objective of the present research project was to investigate the effects of the soil geometrical attributes and interfacial processes (bound water) on the effective permittivity of the soil, and to develop a theoretical frame for improved, soil-specific effective permittivity- water content calibration curves, which are based on easily attainable soil properties. After initializing the experimental investigation of the effective permittivity - water content relationship, we realized that the first step for water content determination by the Time Domain Reflectometry (TDR) method, namely, the TDR measurement of the soil effective permittivity still requires standardization and improvement, and we also made more efforts than originally planned towards this objective. The findings of the BARD project, related to these two consequential steps involved in TDR measurement of the soil water content, are expected to improve the accuracy of soil water content determination by existing in-situ and remote sensing dielectric methods and to help evaluate new water content sensors based on soil electrical properties. A more precise water content determination is expected to result in reduced irrigation levels, a matter which is beneficial first to American and Israeli farmers, and also to hydrologists and environmentalists dealing with production and assessment of contamination hazards of this progressively more precious natural resource. The improved understanding of the way the soil geometrical attributes affect its effective permittivity is expected to contribute to our understanding and predicting capability of other, related soil transport properties such as electrical and thermal conductivity, and diffusion coefficients of solutes and gas molecules. In addition, to the originally planned research activities we also investigated other related problems and made many contributions of short and longer terms benefits. These efforts include: Developing a method and a special TDR probe for using TDR systems to determine also the soil's matric potential; Developing a methodology for utilizing the thermodielectric effect, namely, the variation of the soil's effective permittivity with temperature, to evaluate its specific surface area; Developing a simple method for characterizing particle shape by measuring the repose angle of a granular material avalanching in water; Measurements and characterization of the pore scale, saturation degree - dependent anisotropy factor for electrical and hydraulic conductivities; Studying the dielectric properties of cereal grains towards improved determination of their water content. A reliable evaluation of the soil textural attributes (e.g. the specific surface area mentioned above) and its water content is essential for intensive irrigation and fertilization processes and within extensive precision agriculture management. The findings of the present research project are expected to improve the determination of cereal grain water content by on-line dielectric methods. A precise evaluation of grain water content is essential for pricing and evaluation of drying-before-storage requirements, issues involving energy savings and commercial aspects of major economic importance to the American agriculture. The results and methodologies developed within the above mentioned side studies are expected to be beneficial to also other industrial and environmental practices requiring the water content determination and characterization of granular materials.  


Sign in / Sign up

Export Citation Format

Share Document