Land use evolution over time using public data and a new environmental indicator. Application to the Valencia region (Spain)

Author(s):  
María-Elena Rodrigo-Clavero ◽  
Claudia-Patricia Romero-Hernández ◽  
Javier Rodrigo-Ilarri

<p>In this work a new environmental indicator for the analysis of land use change over time (ENV-IND) is presented. The ENV-IND indicator has been defined and assigned to every land use included on the SIOSE, the official Information System on Land Occupation of Spain. The methodology is based on assigning an ENV-IND value for every polygon considered by the SIOSE as a function of the areal percentage occupied by every land use inside each polygon.</p><p>SIOSE is integrated into the National Land Observation Plan (PNOT) whose objective is to generate a database of Land Occupation for all Spain, integrating all the information available from the regional and central Administration of Spain. The ENV-IND indicator has been defined for 80 different land use categories and its value depend in the joint consideration of the following factors: anthropization nature, water consumption, environmental sustainability and landscape value.</p><p>The evolution of the ENV-IND indicator over time has been obtained for the whole Valencia Region for three different dates (2005-2009-2015) and shows that the environmental value is decreasing with time in terms of the ENV-IND indicator. The ENV-IND indicator is therefore applicable as a tool to quantify and analyze trends of the environmental quality related with land use change.</p><p> </p>

2021 ◽  
Author(s):  
Javier Rodrigo-Ilarri ◽  
Claudia P. Romero-Hernández ◽  
María-Elena Rodrigo-Clavero

<p>Land use in the nearby of a Municipal Solid Waste (MSW) landfill can be strongly affected by the waste management tasks (transport, landfilling and closure). Effects extend from the phases prior to the construction of the landfill until years after the completion of the landfilling process in areas located beyond the perimeter of the plot occupied by the landfill. In this work a new methodology for the analysis of land use change over time is presented. The methodology is based on the use of a new environmental index named WEI (Weighted Environmental Index). WEI is based on the use of GIS techniques accounting for different information sources (digital cartography, aerial photographs and satellite images). WEI assigns environmental values to land use based on the degree of anthropogenic intervention and its occupation surface. A georeferenced multitemporal statistical analysis is performed considering the values of WEI previously assigned to every land use. The methodology has been applied to analyze the land use change near the main MSW landfills of Valencia Region (Spain) where landfilling is currently the only waste disposal technique available. Data have been obtained from the Spanish Land Occupation Information System (SIOSE) public database and integrate GIS information about land use/land cover on an extensive, high-detailed scale. Results demonstrate the application of the WEI to real case studies and the importance of integrating statistical analysis of WEI evolution over time to arrive at a better understanding of the socio-economic and environmental processes that induce land-use change.</p>


2020 ◽  
Vol 12 (24) ◽  
pp. 10234
Author(s):  
Javier Rodrigo-Ilarri ◽  
Claudia P. Romero ◽  
María-Elena Rodrigo-Clavero

For the first time, this paper introduces and describes a new Weighted Environmental Index (WEI) based on object-oriented models and GIS data. The index has been designed to integrate all the available information from extensive and detailed GIS databases. After the conceptual definition of the index has been justified, two applications for the regional and local scales of the WEI are shown. The applications analyze the evolution over time of the environmental value from land-use change for two different case studies in Spain: the Valencian Region and the L’Alcora municipality. Data have been obtained from the Spanish Land Occupation Information System (SIOSE) public database and integrate GIS information about land use/land cover on an extensive, high-detailed scale. Results demonstrate the application of the WEI to real case studies and the importance of integrating statistical analysis of WEI evolution over time to arrive at a better understanding of the socio-economic and environmental processes that induce land-use change.


2020 ◽  
Vol 12 (4) ◽  
pp. 628 ◽  
Author(s):  
Bhagawat Rimal ◽  
Sean Sloan ◽  
Hamidreza Keshtkar ◽  
Roshan Sharma ◽  
Sushila Rijal ◽  
...  

Globally, urbanization is increasing at an unprecedented rate at the cost of agricultural and forested lands in peri-urban areas fringing larger cities. Such land-cover change generally entails negative implications for societal and environmental sustainability, particularly in South Asia, where high demographic growth and poor land-use planning combine. Analyzing historical land-use change and predicting the future trends concerning urban expansion may support more effective land-use planning and sustainable outcomes. For Nepal’s Tarai region—a populous area experiencing land-use change due to urbanization and other factors—we draw on Landsat satellite imagery to analyze historical land-use change focusing on urban expansion during 1989–2016 and predict urban expansion by 2026 and 2036 using artificial neural network (ANN) and Markov chain (MC) spatial models based on historical trends. Urban cover quadrupled since 1989, expanding by 256 km2 (460%), largely as small scattered settlements. This expansion was almost entirely at the expense of agricultural conversion (249 km2). After 2016, urban expansion is predicted to increase linearly by a further 199 km2 by 2026 and by another 165 km2 by 2036, almost all at the expense of agricultural cover. Such unplanned loss of prime agricultural lands in Nepal’s fertile Tarai region is of serious concern for food-insecure countries like Nepal.


2009 ◽  
Vol 5 (1) ◽  
pp. 5-7 ◽  
Author(s):  
Ademola K. Braimoh ◽  
M. Osaki

2019 ◽  
Vol 54 (2) ◽  
pp. 255-272
Author(s):  
K. Sirikantisophon ◽  
W. Wanishsakpong ◽  
P. Chuangchang ◽  
O. Thinnukool

2017 ◽  
Vol 18 (4) ◽  
pp. 211
Author(s):  
Rani Yudarwati ◽  
Santun R.P Sitorus ◽  
Khursatul Munibah

Controlling the rate of land use change is necessary due to maintaining environment sustainability.  One of the efforts is studying the changes that occur in the past few years. These changes can be studied by Markov - Cellular Automata model.Cianjur is one of the regency that has a high risk of landslide hazard, so it is necessary to control land use change in order to realize environmental sustainability in accordance with the spatial plan of Cianjur regency (RTRW). The purpose of this study was to see land use changes that occurred and evaluated with the spatial plan (RTRW) and also to conduct controlling scenarios of land use changes. The analysis showed that Cianjur regency has drastically decreased in forest area up to 10,3% and landuse inconsistencyof 10,4%. The prediction results showed that landuse change without intervention would dramatically increase inconsistency up to 20,5%. Land use scenario of restoring forest could reduce inconsistency up to 16,6%.


2017 ◽  
Vol 240 ◽  
pp. 135-147 ◽  
Author(s):  
Sarah J. Gerssen-Gondelach ◽  
Rachel B.G. Lauwerijssen ◽  
Petr Havlík ◽  
Mario Herrero ◽  
Hugo Valin ◽  
...  

2017 ◽  
Author(s):  
Alistair G. Auffret ◽  
Adam Kimberley ◽  
Jan Plue ◽  
Helle Skånes ◽  
Simon Jakobsson ◽  
...  

Abstract1. Habitat destruction and degradation represent serious threats to biodiversity, and quantification of land-use change over time is important for understanding the consequences of these changes to organisms and ecosystem service provision.2. Comparing land use between maps from different time periods allows estimation of the magnitude of habitat change in an area. However, digitizing historical maps manually is time-consuming and analyses of change are usually carried out at small spatial extents or at low resolutions.3. We developed a method to semi-automatically digitize historical land-use maps using the R environment. We created a number of functions that use the existing raster package to classify land use according to a map’s colours, as defined by the RGB channels of the raster image. The method was tested on three different types of historical land-use map and results were compared to manual digitisations.4. Our method is fast, and agreement with manually-digitised maps of around 80-92% meets common targets for image classification. We hope that the ability to quickly classify large areas of historical land-use will promote the inclusion of land-use change into analyses of biodiversity, species distributions and ecosystem services.


2021 ◽  
Vol 13 (20) ◽  
pp. 11262
Author(s):  
Mohamed A. M. Abd Elbasit ◽  
Jasper Knight ◽  
Gang Liu ◽  
Majed M. Abu-Zreig ◽  
Rashid Hasaan

Although changes in ecosystems in response to climate and land-use change are known to have implications for the provision of different environmental and ecosystem services, quantifying the economic value of some of these services can be problematic and has not been widely attempted. Here, we used a simplified raster remote sensing model based on MODIS data across South Africa for five different time slices for the period 2001–2019. The aims of the study were to quantify the economic changes in ecosystem services due to land degradation and land-cover changes based on areal values (in USD ha−1 yr−1) for ecosystem services reported in the literature. Results show progressive and systematic changes in land-cover classes across different regions of South Africa for the time period of analysis, which are attributed to climate change. Total ecosystem service values for South Africa change somewhat over time as a result of land-use change, but for 2019 this calculated value is USD 437 billion, which is ~125% of GDP. This is the first estimation of ecosystem service value made for South Africa at the national scale. In detail, changes in land cover over time within each of the nine constituent provinces in South Africa mean that ecosystem service values also change regionally. There is a clear disparity between the provinces with the greatest ecosystem service values when compared to their populations and contribution to GDP. This highlights the potential for untapped ecosystem services to be exploited as a tool for regional sustainable development.


Sign in / Sign up

Export Citation Format

Share Document