Investigating geological processes and their links with geological structures through geomanifestations

Author(s):  
Renata Barros ◽  
Kris Piessens ◽  
Helga Ferket ◽  
Nina Rman ◽  
Éva Kun

<p>GeoConnect³d introduced the concept of geomanifestations to define any distinct local expression of ongoing or past geological processes. These manifestations, or anomalies, often point to specific geologic conditions and, therefore, can be important sources of information to improve geological understanding of an area. Examples include seismicity, gas seeps, local compositional differences in groundwater and springs, thermal anomalies, mineral occurrences, jumps in hydraulic head, overpressured zones and geomorphological features. Geomanifestations are an addition to the structural framework model also being developed in GeoConnect³d, aiming to show where and how processes and structures may be linked.</p><p>Data on geomanifestations are being collected in three areas: the Roer-to-Rhine area of interest in northwest Europe, and the Mura-Zala Basin and Battonya High within the Pannonian Basin area of interest in Eastern Europe. A first assessment of available data showed that groundwater-related geomanifestations in the form of anomalies in chemical composition (enrichment in elements such as Fe, or hydrocarbon gases and CO<sub>2,</sub>) or temperature (thermal water springs, geothermal anomaly in wells) are mappable in all areas. These geomanifestations point to special geological features in each area, such as proximity to magmatic reservoirs, presence of deep-rooted faults and considerable differences in the subsurface relief (trough–high system of the basement) among others. These anomalies at times define spatial patterns, which might or not be represented in the structural framework model, thus demonstrating whether they can be explained by the current geological understanding embedded in the structural framework. With this first test, we conclude that data on groundwater-related geomanifestations add to the robustness of the structural framework model. Further investigations with other types of geomanifestations are foreseen.</p><p>This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166.</p>

2020 ◽  
Author(s):  
Kris Piessens ◽  
Renata Barros ◽  
Katrijn Dirix ◽  
Jef Deckers ◽  
Johan ten Veen ◽  
...  

<p>A structural framework is a well-defined concept, being used primarily to add structural understanding to a geological model. Within GeoConnect³d, a new approach is used, i.e. the structural framework concept is modified to become the leading model, in which geological maps and models can be inserted and related to. This structural framework is being developed and implemented for two areas of interest - Roer-to-Rhine in northwest Europe and Pannonian Basin in eastern Europe - and will soon be implemented in two pilot areas, Ireland and Bavaria. The organisation of information is strongly linked to different scales of visualisation, starting from the pan-European view (1:15,000,000) with the possibility to zoom in to the scale of local geological models and maps in these four areas.</p><p>The GeoConnect³d structural framework reorganises geological information in terms of geological limits and geological units. Limits are defined as broadly planar structures that separate a given geological unit from its neighbouring units, e.g. faults (limits) that define a graben (unit), or an unconformity (limit) that defines a basin (unit). Therefore, the key relationship between these two structural framework elements is that units are defined by limits i.e. all units must be bounded by limits. It is important to note that this relationship is not necessarily mutual: not all limits have to be unit-defining.</p><p>A first test of the structural framework methodology was carried out in the Netherlands and Belgium for the Roer Valley graben, as the faults in this area were already modelled in a cross-boundary project (H3O-Roer Valley Graben). Displaying different elements according to scale of visualisation coupled with vocabulary information (definition, grouping and semantic relations between elements, etc.) following the SKOS-system proved a powerful tool to display geological information in an understandable way and improve insights in large-scale geological structures crossing national borders. Additionally, links with other GeoERA projects such as HIKE and its fault database are being successfully established. We consider the outcomes of this test promising to fulfil one of the main goals of GeoConnect³d, i.e. preparing and disclosing geological information in an understandable way for stakeholders. We also consider this as the way forward towards pan-European integration and harmonisation of geological information, where the ultimate challenge is to correlate or otherwise link information from different geological domains and of different scales.</p><p>This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166.</p>


2021 ◽  
Author(s):  
Renata Barros ◽  
Kris Piessens ◽  
the GeoConnect³d team

<p>The transition towards a clean and low carbon energy system in Europe will increasingly rely on the use of the subsurface. Despite the vastness of subsurface space, only a fraction of it is suitable for the exploitation of geo-resources. The distribution and fitting combination of required conditions is determined by geological processes. We are, therefore, constrained in where we can develop resources and capacities. Moreover, increased subsurface use in a restricted area will inevitably lead to high chances of interferences and conflicts of interest. This means that sound geological information is essential to optimise the subsurface contribution to a safe and efficient energy transition.</p><p>Within this scope, the main goal of the GeoConnect³d project is to convert existing geological data into an information system that can be used for various geo-applications, decision-making, and subsurface spatial planning. This is being accomplished through the innovative structural framework model, which reorganises, contextualises, and adds value to geological data. The model is primarily focused on geological limits, or broadly planar structures that separate a given geological unit from its neighbouring units. It also includes geomanifestations, highlighting any distinct local expression of ongoing or past geological processes. These manifestations, or anomalies, often point to specific geologic conditions and, therefore, can be important sources of information to improve geological understanding of an area.</p><p>Geological data in this model are composed of spatial data at different scales, with a one-to-one link between geometries and their specific attributes (including uncertainties), and of semantic data, with data organised conceptually and categorised and/or linked using SKOS hierarchical and generic schemes. Concepts and geometries are linked by a one-to-many relationship. The combination of these elements then results in a multi-scale, harmonised and robust model.</p><p>The structural framework-geomanifestations methodology has now been applied to different areas in Europe. The focus on geological limits brings various advantages, such as displaying geological information in an explicit, and therefore more understandable, way, and simplifying harmonisation efforts in large-scale geological structures crossing national borders. The link between spatial and semantic data is the essential step adding conceptual definitions and interpretations to geometries. Additionally, geomanifestation data successfully validates or points to inconsistencies in specific areas of the model, which can then be further investigated.</p><p>The model demonstrates it is possible to gather existing geological data into a comprehensive knowledge system. We consider this as the way forward towards pan-European integration and harmonisation of geological information. Moreover, we identify the great potential of the structural framework model as a toolbox to communicate geosciences beyond our specialised community. This is an important step to support subsurface spatial planning towards a clean energy transition by making geological information available to all stakeholders involved.</p><p>This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166.</p>


2021 ◽  
Author(s):  
Serge Van Gessel ◽  
Rob van Ede ◽  
Hans Doornenbal ◽  
Johan ten Veen ◽  
Esther Hintersberger ◽  
...  

<p>Faults are prominent features in the subsurface that define the geological development and distribution of geological formations and resources therein. Faults can define resources themselves (e.g. minerals, thermal conduits), but more often they can pose a hazard to subsurface drilling, injection and extraction activities . Well-known examples are Basel – Switzerland (geothermal stimulation), Oklahoma – US (waste water injection) and Groningen – The Netherlands (conventional hydrocarbon extraction).</p><p>Despite that faults are a typical product of geological mapping, there was, until now, no consistent insight in these structures in a pan-European context. There are some examples focusing on the publication of seismogenic faults (e.g. GEM Global Active Faults Database, SHARE  European Database of Seismogenic Faults, USGS Quaternary faults database), yet deeply buried faults are under-represented here. With the European fault database, the GeoERA-HIKE project addresses the following objectives: i) develop a consistent and uniform repository for fault data and characteristics across Europe, ii) Implement an associated tectonic vocabulary which provides a framework for future interpretation, modelling and application of fault data, and iii) assess the applicability of fault data in case studies.</p><p>The current fault database is envisioned to be a major stepping stone for a sustained and uniform development and dissemination of tectonic data and knowledge which will be applicable to a broad spectrum of subsurface research challenges. The database contains data from Geological Survey Organizations and partners in the Netherlands, Germany, Austria, Belgium, Iceland, Denmark, Poland, Lithuania, Italy, France, Ukraine, Portugal, Slovenia, Albania and various countries in the Pannonian Basin Area.</p><p>The GeoERA-HIKE project has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No. 731166</p>


2021 ◽  
Author(s):  
Martina Moroni ◽  
Alessandro Mura ◽  
Anna Milillo ◽  
Andrè Nicolas

<div> <p><span>The propagation of Solar events and the response of planetary environment is a fundamental area of interest in the study of the solar system, object of several models and tools for data analysis. In the framework of the starting Europlanet-2024 program, the Virtual Activity (VA) SPIDER (Sun-Planet Interactions Digital Environment on Request) aims a publicly available and sophisticated services, in order to model planetary environments and solar wind interactions. One of these services is focused on the prototype for the model of the Mercury exosphere, in particular to study its exospheric density and the solar wind precipitation to the surface. Mercury is a unique case in the solar system: absence of an atmosphere and the weakness of the intrinsic magnetic field. The Hermean exosphere is continuously eroded and refilled by interactions with plasma and surface, so the environment is considered as a single, unified system – surface- exosphere-magnetosphere</span><span>.  </span><span>The study of the generation mechanisms, the compositions and the configuration of the Hermean exosphere will provide crucial insight in the planet status and evolution.</span></p> </div><div> <p><span>The MESSENGER/NASA mission visited Mercury in the period 2008-2015, adding a consistent amount of data but a global description of planet’s exosphere is still not available; the ESA BepiColombo mission will study Mercury orbiting around the planet from 2025. For this reason, it is important to have a modelling tool ready for interpreting observational data and testing different hypothesis on release mechanism.  Considering different generation and loss mechanisms</span><span>, </span><span>we present a Monte Carlo three-dimensional model of the Hermean exosphere, that considers all the major sources and loss mechanisms. In fact, this numerical model includes among the processes responsible of the formation of such an exosphere the ion sputtering (IS), the thermal desorption (TD), the photon-stimulated desorption (PSD) and micro-meteoroids impact vaporization (MMIV) from the planetary surface. The model calculates the trajectories of ejected particles from which we obtain the spatial and energy distributions of atmospheric particles. Furthermore, an analytical model is obtained by fitting the numerical data with parametric functions. In this way, it is possible to model the exosphere of Mercury for each source separately and we can investigate the role of each physical source independently of the others.  </span></p> </div><div> <p><span>Here we present the web-based interface of the model and the functionalities of this infrastructure that is being implemented in SPIDER. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149.</span></p> </div>


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 14
Author(s):  
Laura Pérez ◽  
Juan Espeche ◽  
Tatiana Loureiro ◽  
Aleksandar Kavgić

DRIvE (Demand Response Integration Technologies) is a research and innovation project funded under the European Union’s Horizon 2020 Framework Program, whose main objective is unlocking the demand response potential in the distribution grid. DRIvE presented how the use of digital twins de-risks the implementation of demand response applications at the “Flexibility 2.0: Demand response and self-consumption based on the prosumer of Europe’s low carbon future” workshop within the conference “Sustainable Places 2020”. This workshop was organized to cluster and foster knowledge transfer between several EU projects, each developing innovative solutions within the field of demand response, energy flexibility, and optimized synergies between actors of the built environment and the power grid.


2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Ioannis A. Daglis ◽  
Afroditi Nasi ◽  
Constantinos Papadimitriou ◽  
Marina Georgiou

<p>Radial diffusion has been established as one of the most important mechanisms contributing the acceleration and loss of relativistic electrons in the outer radiation belt. Over the past few years efforts have been devoted to provide empirical relationships of radial diffusion coefficients (D<sub>LL</sub>) for radiation belt simulations yet several studies have suggested that the difference between the various models can be orders of magnitude different at high levels of geomagnetic activity as the observed D<sub>LL</sub> have been shown to be highly event-specific. In the frame of SafeSpace project we have used 12 years (2009 – 2020) of multi-point magnetic and electric field measurements from THEMIS A, D and E satellites to create a database of calculated D<sub>LL</sub>. In this work we present the first statistics on the evolution of D<sub>LL </sub>during the various phases of Solar cycle 24 with respect to the various solar wind parameters and geomagnetic indices.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437.</p>


2021 ◽  
Author(s):  
Abdul Mohsen Al-Maskeen ◽  
Sadaqat Ali

Abstract A new automated approach to well correlation is presented that utilizes real-time Logging While-Drilling (LWD) data and predicted well curve to dynamically update subsurface layers during geosteering operations. The automatically created predicted log and a dynamically updated structural framework provides the foundation of the process. The predicted log is created using vertical sections of the nearby wells, which provide high confidence for determining depth and stratigraphic position of the geosteered well. The results give a better understanding of thickness variation in the horizontal part of the reservoir and maximize the reservoir contact (Sung, 2008). A new advanced methodology introduced in this study involves the creation of a dynamic structural framework model, from which horizontal well correlation is performed using real-time well logs and predicted logs that are generated from adjacent wells. The predicted logs are correlated to the LWD logs using anchor points and an interactive stretching and squeezing process that honors true stratigraphic thickness. Each new anchor point results in the creation of an additional control point that is used to build a more precise structural framework model. This new approach enables more rapid well log interpretation, increased accuracy and the ability to dynamically update the subsurface model during drilling. It also enables more efficient steering of the wellbore into the most productive zones of the reservoir. This study demonstrates how wells with over 10,000 feet of horizontal reservoir contact can be correlated in a real-time geosteering environment in a dynamic, efficient and accurate manner. The proposed process dramatically helps reduce the cost of drilling and the time it takes to dynamically regenerate accurate updated maps of the subsurface. It represents a major improvement in the understanding and modeling of complex, heterogeneous reservoirs by fostering a multi-disciplinary environment of cross-domain experts that are able to collaborate seamlessly as asset-teams. Both accuracy and efficiency gains have been realized by incorporating this methodology in the characterization of multi-stacked reservoirs.


2021 ◽  
Vol 17 (1) ◽  
pp. 247-255
Author(s):  
Konstantinos CHARISI ◽  
Andreas TSIGOPOULOS ◽  
Spyridon KINTZIOS ◽  
Vassilis PAPATAXIARHIS

Abstract. The paper aims to introduce the ARESIBO project to a greater but targeted audience and outline its main scope and achievements. ARESIBO stands for “Augmented Reality Enriched Situation awareness for Border security”. In the recent years, border security has become one of the highest political priorities in EU and needs the support of every Member State. ARESIBO project is developed under HORIZON 2020 EC Research and Innovation program and it is the joint effort of 20 participant entities from 11 countries. Scientific excellence and technological innovation are top priorities as ARESIBO enhances the current state-of-the-art through technological breakthroughs in Mobile Augmented Reality and Wearables, Robust and Secure Telecommunications, Robots swarming technique and Planning of Context-Aware Autonomous Missions, and Artificial Intelligence (AI), in order to implement user-friendly tools for border and coast guards. The system aims to improve the cognitive capabilities and the perception of border guards through intuitive user interfaces that will help them acquire an improved situation awareness by filtering the huge amount of available information from multiple sources. Ultimately, it will help them respond faster and more effectively when a critical situation occurs.


2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


Sign in / Sign up

Export Citation Format

Share Document