Fertilization effects on the fungal biomass in grasslands

Author(s):  
Ana Barreiro ◽  
Aaron Fox ◽  
Andreas Lüscher ◽  
Franco Widmer ◽  
Linda-Maria Dimitrova Mårtersson

<p>Fertilisation is a common practise in grass production systems performed to increase primary production, a supporting ecosystem service essential for other services. However, different fungal groups, like saprothropic fungi (SF) and the obligate symbionts arbuscular mycorrhizal fungi (AMF), have potential differential response to the fertilizer concentration and composition. Three controlled field experiments were utilised in our study, two medium-term (6 years) in the south of Sweden (SE) and one long-term experiment (46 year) in Switzerland (CH), all sampled in 2018. The Swedish sites included the same two factor treatment, i.e. four different plant mixtures and two (SE-Lanna) or three (SE-Alnarp) nitrogen fertilization levels (0, 60, 120 kg ha<sup>-1</sup> yr<sup>-1</sup>); while the Swiss experiment  included different proportions of N, P and K fertilization under different cutting regimes (CH-Bremgarten). The PLFA and NLFA (phospholipid- and neutral lipid fatty acid) analysis was used to estimate the fungal biomass (SF+AMF). The application of N was associated with a decrease in the AMF biomass, with significant effects with the application of 60 and 120 kg N ha<sup>-1</sup> in SE-Alnarp, and 75 and 150 kg N ha<sup>-1</sup> in CH-Bremgarten. On the other hand, the SF biomass was only negatively affected by the N fertilization in SE-Lanna (60 kg N ha<sup>-1</sup>) under the plant mixture that showed the biggest SF biomass in the unfertilized plot; and by the highest application of N in CH-Bremgarten. Our findings indicate that nitrogen fertilization influences microbial community structure and reduces the abundance of AMF, with these being more sensitive than SF to fertilizer application.</p>

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Christopher Ngosong ◽  
Elke Gabriel ◽  
Liliane Ruess

Biomass estimation of arbuscular mycorrhiza (AM) fungi, widespread plant root symbionts, commonly employs lipid biomarkers, predominantly the fatty acid 16:1ω5. We briefly reviewed the application of this signature fatty acid, followed by a case study comparing biochemical markers with microscopic techniques in an arable soil following a change to AM non-host plants after 27 years of continuous host crops, that is, two successive cropping seasons with wheat followed by amaranth. After switching to the non-host amaranth, spore biomass estimated by the neutral lipid fatty acid (NLFA) 16:1ω5 decreased to almost nil, whereas microscopic spore counts decreased by about 50% only. In contrast, AM hyphal biomass assessed by the phospholipid (PLFA) 16:1ω5 was greater under amaranth than wheat. The application of PLFA 16:1ω5 as biomarker was hampered by background level derived from bacteria, and further enhanced by its incorporation from degrading spores used as microbial resource. Meanwhile, biochemical and morphological assessments showed negative correlation for spores and none for hyphal biomass. In conclusion, the NLFA 16:1ω5 appears to be a feasible indicator for AM fungi of the Glomales group in the complex field soils, whereas the use of PLFA 16:1ω5 for hyphae is unsuitable and should be restricted to controlled laboratory studies.


2005 ◽  
Vol 71 (5) ◽  
pp. 2592-2599 ◽  
Author(s):  
Pål Axel Olsson ◽  
Ingrid M. van Aarle ◽  
Mayra E. Gavito ◽  
Per Bengtson ◽  
Göran Bengtsson

ABSTRACT The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r 2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.


2019 ◽  
Vol 95 (10) ◽  
Author(s):  
Jake J Grossman ◽  
Allen J Butterfield ◽  
Jeannine Cavender-Bares ◽  
Sarah E Hobbie ◽  
Peter B Reich ◽  
...  

ABSTRACT While the relationship between plant and microbial diversity has been well studied in grasslands, less is known about similar relationships in forests, especially for obligately symbiotic arbuscular mycorrhizal (AM) fungi. To assess the effect of varying tree diversity on microbial alpha- and beta-diversity, we sampled soil from plots in a high-density tree diversity experiment in Minnesota, USA, 3 years after establishment. About 3 of 12 tree species are AM hosts; the other 9 primarily associate with ectomycorrhizal fungi. We used phospho- and neutral lipid fatty acid analysis to characterize the biomass and functional identity of the whole soil bacterial and fungal community and high throughput sequencing to identify the species-level richness and composition of the AM fungal community. We found that plots of differing tree composition had different bacterial and fungal communities; plots with conifers, and especially Juniperus virginiana, had lower densities of several bacterial groups. In contrast, plots with a higher density or diversity of AM hosts showed no sign of greater AM fungal abundance or diversity. Our results indicate that early responses to plant diversity vary considerably across microbial groups, with AM fungal communities potentially requiring longer timescales to respond to changes in host tree diversity.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 106 ◽  
Author(s):  
Luca Giovannini ◽  
Michela Palla ◽  
Monica Agnolucci ◽  
Luciano Avio ◽  
Cristiana Sbrana ◽  
...  

Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms establishing mutualistic symbioses with the roots of the most important food crops and playing key roles in the maintenance of long-term soil fertility and health. The great inter- and intra-specific AMF diversity can be fully exploited by selecting AMF inocula on the basis of their colonization ability and efficiency, which are affected by fungal and plant genotypes and diverse environmental variables. The multiple services provided by AMF are the result of the synergistic activities of the bacterial communities living in the mycorrhizosphere, encompassing nitrogen fixation, P solubilization, and the production of phytohormones, siderophores, and antibiotics. The tripartite association among host plants, mycorrhizal symbionts, and associated bacteria show beneficial emerging properties which could be efficiently exploited in sustainable agriculture. Further in-depth studies, both in microcosms and in the field, performed on different AMF species and isolates, should evaluate their colonization ability, efficiency, and resilience. Transcriptomic studies can reveal the expression levels of nutrient transporter genes in fungal absorbing hyphae in the presence of selected bacterial strains. Eventually, newly designed multifunctional microbial consortia can be utilized as biofertilizers and biostimulants in sustainable and innovative production systems.


2003 ◽  
Vol 16 (1) ◽  
pp. 131 ◽  
Author(s):  
J. Bell ◽  
S. Wells ◽  
D. A. Jasper ◽  
L. K. Abbott

Field experiments were conducted at rehabilitation sites at two contrasting mines in Western Australia. At both mines, Acacia spp. are important components of the rehabilitation ecosystem. At a mineral sands mine near Eneabba, dry-root inoculum of the arbuscular mycorrhizal (AM) fungus Glomus invermaium (WUM 10) was introduced into riplines with three rates of phosphate fertiliser application. Plants were assessed for mycorrhizal colonisation and phosphorus status. There was no plant growth benefit from inoculation. A considerable number of infective propagules of indigenous AM fungi was already present in the topsoil. The inoculant fungus as well as the indigenous AM fungi formed mycorrhizas, but only in a small number of Acacia and other native plant species. In a study of AM fungal inoculation at a gold mine rehabilitation site at Boddington, dry-root inoculum of G.�invermaium was applied to riplines prior to seeding. Despite apparently ideal environmental conditions, colonisation of native seedlings was limited. Possible reasons for this were investigated in further experiments that addressed environmental factors such as soil temperature and moisture and factors such as the age of the plant and presence of a colonised cover crop. Inoculum remained infective even under moist conditions in field soil for at least 4 months. Its infectivity decreased in parallel with falling temperatures. However, the level of infectivity present did not ensure extensive colonisation of native plants such as Acacia seedlings in the field. Susceptibility of Acacia seedlings to colonisation by AM fungi appeared to be seasonal, as colonisation increased with increasing daytime temperatures and daylight hours.


1992 ◽  
Vol 28 (4) ◽  
pp. 433-442 ◽  
Author(s):  
Edwin Weber ◽  
Eckhard George ◽  
Douglas P. Beck ◽  
Mohan C. Saxena ◽  
Horst Marschner

SUMMARYInoculation with vesicular-arbuscular mycorrhizal fungi (VAMF) improved growth of chick-pea (Cicer arielinum L.) and doubled phosphorus (P) uptake at low and intermediate levels of P fertilization in a pot experiment on sterilized low-P calcareous soil. In field experiments at Tel Hadya, northern Syria, growth, shoot P concentration and seed yield of spring-sown chickpea remained unaffected by inoculation with VAMF or by P fertilization. The mycorrhizal infection of chickpea was high (approximately 75% of root length mycorrhizal at the flowering stage) irrespective of inoculation with VAMF or P fertilization and may ensure efficient P uptake under field conditions.


1989 ◽  
Vol 69 (3) ◽  
pp. 939-943 ◽  
Author(s):  
D. J. THOMPSON ◽  
K. W. CLARK

Three field experiments were performed to determine the effects of fall nitrogen fertilization and post-harvest mechanical stubble removal (to 2.5 cm) on seed yield in Kentucky bluegrass (Poa pratensis L. ’Nugget’). In all experiments, N fertilization and stubble removal increased seed yield. Increases were greater in a 3-yr-old than in a 5-yr-old stand. Nitrogen fertilization increased panicle density, panicle weight, shoot height and straw yield. Stubble removal increased panicle density, reduced panicle weight, shoot height, and straw yield and increased harvest index.Key words: Nitrogen, stubble removal, seed, Kentucky bluegrass


Sign in / Sign up

Export Citation Format

Share Document