INFLUENCE OF NITROGEN FERTILIZATION AND MECHANICAL STUBBLE REMOVAL ON SEED PRODUCTION OF KENTUCKY BLUEGRASS IN MANITOBA

1989 ◽  
Vol 69 (3) ◽  
pp. 939-943 ◽  
Author(s):  
D. J. THOMPSON ◽  
K. W. CLARK

Three field experiments were performed to determine the effects of fall nitrogen fertilization and post-harvest mechanical stubble removal (to 2.5 cm) on seed yield in Kentucky bluegrass (Poa pratensis L. ’Nugget’). In all experiments, N fertilization and stubble removal increased seed yield. Increases were greater in a 3-yr-old than in a 5-yr-old stand. Nitrogen fertilization increased panicle density, panicle weight, shoot height and straw yield. Stubble removal increased panicle density, reduced panicle weight, shoot height, and straw yield and increased harvest index.Key words: Nitrogen, stubble removal, seed, Kentucky bluegrass

2002 ◽  
Vol 82 (4) ◽  
pp. 687-692 ◽  
Author(s):  
B. D. Gossen ◽  
J. J. Soroka ◽  
H. G. Najda

Little information is available on the management of turfgrass species for seed production in the Canadian prairies. The objective of these studies was to assess the impact of residue management and row spacing on seed yield under irrigation. A factorial experiment was seeded at Saskatoon, SK, in 1993 to assess the impact of burning or scalping (very close mowing with residue removal) vs. mowing, and 20- vs. 40-cm row spacing on seed yield of Kentucky bluegrass (KBG) (Poa pratensis), creeping red fescue (CRF) (Festuca rubra subsp. rubra) and creeping bentgrass (CBG) (Agrostis palustris). Also, a residue management trial on KBG was seeded at Brooks, AB, in 1993. At Saskatoon, yield was higher at 20-cm spacing across all three species in 1994, but spacing had no impact on winter survival, stand density, tiller growth or yield in subsequent years. Burning and scalping consistently resulted in earlier spring green-up, a higher proportion of fertile tillers, and higher seed yield than mowing. Even with residue management, yield declined after one harvest in CBG and CRF, and after two harvests in KBG. At Brooks, residue management had a similar impact on yield of KBG. A second trial at Brooks examined the impact of row spacing (20, 40, 60 cm) and seeding rate (0.5 to 6 kg seed ha-1) on KBG. Seed yield was highest at 40-cm spacings in 1994, at 60 cm in 1995, and at 40 to 60 cm in 1996. Seeding rate did not have a consistent effect on yield. We conclude that a combination of residue management and 20- to 40-cm spacings provide the highest, most consistent seed yields for these turfgrass species in this region. Key words: Burning, clipping, turfgrass, seed production, row spacing, Poa, Festuca, Agrostis


1988 ◽  
Vol 36 (4) ◽  
pp. 315-325 ◽  
Author(s):  
W.J.M. Meijer ◽  
S. Vreeke

In field experiments in 1981-86, Poa pratensis cv. Kimono and Baron and Festuca rubra cv. Agram and Koket were undersown in companion crops of winter wheat cv. Arminda. Cuts were made immediately after wheat harvest or 4-6 weeks later. N application as autumn and spring dressings did not alter the effects of cutting. In most experiments, cutting treatments increased production of inflorescence and seed yield, mainly due to better illumination, and increased survival of the late elongating reproductive tillers. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Weed Science ◽  
1980 ◽  
Vol 28 (3) ◽  
pp. 292-294 ◽  
Author(s):  
W. O. Lee

Ethofumesate [(±)-2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulfonate] was evaluated in field experiments at rates from 0.6 to 4.5 kg/ha for control of volunteer wheat (Triticum aestivumL. ‘Hyslop’, ‘Stephens’) in fall-planted perennial ryegrass (Lolium perenneL. ‘Cropper’, ‘Pelo’, ‘Pennfine’, ‘Omega’). Ethofumesate applied at 1.7 kg/ha or more in mid-November to wheat in the one-to three-leaf stage eliminated the wheat. Wheat was not eliminated when ethofumesate was applied preemergence soon after planting or when applied at the end of November to wheat in the four-leaf to four-tiller stage. In four experiments in which wheat was present, ethofumesate significantly increased perennial ryegrass seed production. In one experiment in which wheat was not present, ethofumesate did not affect perennial ryegrass seed production. Ethofumesate applied in the fall at rates to 4.5 kg/ha to newly-seeded perennial ryegrass or to well-established bentgrass (Agrostis tenuisSibth. ‘Highland’), Kentucky bluegrass (Poa pratensisL. ‘Newport’), and Italian ryegrass (Lolium multiflorumLam.) did not adversely affect germination of the following seed crop.


1939 ◽  
Vol 29 (3) ◽  
pp. 379-398 ◽  
Author(s):  
D. J. Watson

An account is given of the results of two series of field experiments carried out at Rothamsted and Woburn in the years 1926 to 1936 on the effect of nitrogenous fertilizers on wheat. In the first series a comparison was made of the effects of early (March) and late (May) top-dressings, and in the second series a range of times of application from sowing to the end of May were tested.At Rothamsted, the increases of yield of grain produced by the nitrogenous fertilizer were small and rarely significant, but they were greater at Woburn. On the average of all experiments, the effect of the fertilizer on yield of grain was independent of the time of application. In individual years, variation in effectiveness between times of application was found, and this was correlated with the amount of rain falling in a short period after the time of application. At Woburn, the effectiveness of the fertilizer decreased with increase in the amount of rain falling immediately after the application of the fertilizer, but at Rothamsted the effects were less clear and appeared to be in the opposite direction.The effects on straw yield were relatively greater, and more consistent, than those on grain yield. A greater increase of straw yield was produced by early top-dressing (January–March) than by application at the time of sowing, and the increase declined steadily the later the time of topdressing. Shoot height was increased by the nitrogenous fertilizer, and varied with time of application in a similar manner to straw yield.


1992 ◽  
Vol 6 (4) ◽  
pp. 852-857 ◽  
Author(s):  
J. Christopher Hall ◽  
C. Ken Carey

Effects of linuron on annual bluegrass control and Kentucky bluegrass cultivar tolerance were studied in field and growth chamber experiments. In controlled environment experiments, linuron at 0.06, 0.12, 0.25, 0.50, and 0.75 kg ai ha-1 was applied to pure stands of annual bluegrass and eight Kentucky bluegrass cultivars. Linuron at the two highest rates controlled annual bluegrass, reducing the clipping dry weight by more than 85% 4 wk after treatment, and by 65 to 92% 6 wk after treatment. Growth of Kentucky bluegrass was reduced with the most severe reduction occurring 2 wk after linuron application. All cultivars exhibited normal growth 8 wk after treatment. In field experiments, linuron at rates from 1.5 to 2.0 kg ai ha-1 controlled annual bluegrass in old (> 5 yr) Kentucky bluegrass stands, and in 16 cultivars of 1-yr and 2-yr-old Kentucky bluegrass stands, with little or no damage. At rates of 1.5, 2.0, and 2.5 kg ai ha-1 linuron, damage to newly seeded cultivars was moderate to severe. However, 6 to 7 wk after linuron application to newly seeded cultivars, stand density and turf quality were equivalent to untreated checks.


2020 ◽  
Author(s):  
Ana Barreiro ◽  
Aaron Fox ◽  
Andreas Lüscher ◽  
Franco Widmer ◽  
Linda-Maria Dimitrova Mårtersson

<p>Fertilisation is a common practise in grass production systems performed to increase primary production, a supporting ecosystem service essential for other services. However, different fungal groups, like saprothropic fungi (SF) and the obligate symbionts arbuscular mycorrhizal fungi (AMF), have potential differential response to the fertilizer concentration and composition. Three controlled field experiments were utilised in our study, two medium-term (6 years) in the south of Sweden (SE) and one long-term experiment (46 year) in Switzerland (CH), all sampled in 2018. The Swedish sites included the same two factor treatment, i.e. four different plant mixtures and two (SE-Lanna) or three (SE-Alnarp) nitrogen fertilization levels (0, 60, 120 kg ha<sup>-1</sup> yr<sup>-1</sup>); while the Swiss experiment  included different proportions of N, P and K fertilization under different cutting regimes (CH-Bremgarten). The PLFA and NLFA (phospholipid- and neutral lipid fatty acid) analysis was used to estimate the fungal biomass (SF+AMF). The application of N was associated with a decrease in the AMF biomass, with significant effects with the application of 60 and 120 kg N ha<sup>-1</sup> in SE-Alnarp, and 75 and 150 kg N ha<sup>-1</sup> in CH-Bremgarten. On the other hand, the SF biomass was only negatively affected by the N fertilization in SE-Lanna (60 kg N ha<sup>-1</sup>) under the plant mixture that showed the biggest SF biomass in the unfertilized plot; and by the highest application of N in CH-Bremgarten. Our findings indicate that nitrogen fertilization influences microbial community structure and reduces the abundance of AMF, with these being more sensitive than SF to fertilizer application.</p>


2004 ◽  
Vol 44 (3) ◽  
pp. 353 ◽  
Author(s):  
R. S. Tegg ◽  
P. A. Lane

The increased use of semi and fully enclosed sports stadiums necessitates the ongoing selection, development and assessment of shade-tolerance in turfgrass species. Vertical shoot growth rate is a simple biological measure that may supplement visual turfgrass assessment and provide a useful measure of shade adaptation. Cool-season temperate turfgrasses; Kentucky bluegrass–perennial ryegrass (Poa pratensis L.–Lolium perenne L.), creeping bentgrass (Agrostis palustris Huds.), supina bluegrass (Poa supina Schrad.) and tall fescue (Festuca arundinacea Schreb.), and a warm season species, Bermudagrass (Cynodon dactylon L.), were established in pot and field experiments and subjected to 4 shade treatments (0, 26, 56 or 65% shade) under ambient conditions. Average light readings taken near the winter and summer solstice in full sunlight at midday, were 790 and 1980�μmol/m2.s, respectively. Field and pot trials confirmed supina bluegrass and tall fescue to have the greatest shade tolerance, producing high turf quality under 56 and 65% shade. However, all turfgrass species declined in quality under high shade levels as indicated by an increase in thin, succulent vertical growth, and a less-dense turf sward. Vertical shoot growth rates of all species increased linearly with increasing shade levels. Kentucky bluegrass–perennial ryegrass had the highest rate of increase in vertical shoot elongation under shade, approximately 3.5 times greater than supina bluegrass, which had the lowest. Low rates of increase in vertical shoot elongation under shade indicated shade tolerance whereas high rates inferred shade intolerance.


2010 ◽  
Vol 50 (3) ◽  
pp. 372-378 ◽  
Author(s):  
Ibrahim Soliman ◽  
Amany Hamza

Evaluation of Some Herbicides Against Flax Dodder (Cuscuta EpilinumWeihe) In Fibre Flax (Linum UstatissimumL.) CultivationTwo field experiments were carried out in Sakha Experimental Station during two seasons to evaluate the efficacy of different treatments (hand combing, butralin, tribenuron-methyl, metosulam and fluazifop-p-butyl) in controlling dodder weed (Cuscuta epilinumWeihe) in Fibre flax. Moreover, the effect of these treatments on some growth characters of flax yield and its components was also determined. All tested herbicide treatments decreased the dodder infestation in flax for up to 49 days. All tested herbicide treatments increased all flax growth characters, (straw yield and seed yield). Butralin herbicide gave the best control of dodder, followed by metosulam, tribenuron-methyl and fluazifop-p-butyl. Also, the data revealed that most herbicidal treatments slightly decreased protein content of flax plants and did not adversely affect the oil content of its seeds. This study suggests that, under heavy infestation of dodder weed, the use of the tested herbicides, especially butralin, is highly recommended.


HortScience ◽  
1990 ◽  
Vol 25 (1) ◽  
pp. 84-86 ◽  
Author(s):  
R.J. Cooper ◽  
P.C. Bhowmik ◽  
L.A. Spokas

Field experiments were conducted to determine the response of five widely used Kentucky bluegrass (Poa pratensis L.) cultivars (Adelphi, Baron, Bensun, Merion, and Touchdown) to preemergence applications of the herbicide pendimethalin. Pendimethalin applied during 2 years at 1.7 or 3.4 kg·ha-1 (a.i.) controlled smooth crabgrass [Digitaria ischaemum (Schreb. ex Schweig.) Schreb. ex Muhl.] effectively without injury to turf. Pendimethalin at 3.4 kg·ha-1 resulted in a short-term suppression of root growth immediately following application in the first year of the study. The reduction was transitory and subsequent rooting and rhizome growth were unaffected by pendimethalin. Cultivar × pendimethalin level interactions were not significant during the study. Thus, the herbicide appears to be a safe, effective preemergence material for crabgrass control in Kentucky bluegrass turf. Chemical name used: N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin).


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


Sign in / Sign up

Export Citation Format

Share Document