Porosity and hydrocarbon composition evolution in shales from the Domanic and Bazhenov Formations: Insights from pyrolysis and aqua thermolysis experiments.

Author(s):  
Dina Gafurova ◽  
Anton Kalmykov ◽  
Dmitriy Korost ◽  
Tikhonova Margarita ◽  
Vidishcheva Olesia

<p>The Domanic and Bazhenov Formations are the largest unconventional oil and gas resources in Russia. In this regard, research of mechanisms and transformation features of pore space structure, as well as hydrocarbon fluids composition are of greatest interest. In recent time technologies for modeling of thermal maturation of rocks under close to reservoir conditions similar, such as pyrolysis and aqua pyrolysis can be used. The natural process of organic matter maturation has a direct impact on the rock pore space alterations. Experimental studies of rocks (more than 100 experiments) with monitoring of the pore space using computer microtomography were performed. As a result of research, it was possible to clarify the influence of rock characteristics on the transformation of the pore space, as well as on the hydrocarbons composition. The structural features of the mineral part of the rock control the distribution of organic matter: for rocks with a layered distribution of organic matter, the formation of a crack system is characteristic. In samples with a massive structure, newly formed pores were noted. The rocks with the highest organic matter content from 20% were characterized by the formation of lenses (Fig. 1). The content of organic matter and its maturity directly affect the volume of the newly formed pore space.</p><p>Performed investigations allowed to reveal the trends of hydrocarbons generation in source rocks and unconventional reservoirs formation. Also heating of rocks by various methods under reservoir conditions approved potential of tertiary methods of reservoir stimulation. Pyrolysis in-situ of Bazhenov and Domanic source rocks would allow to generate “synthetic” oil of similar to natural one composition and increase permeability of rocks by pores and cracks formation.</p><p>This work was partially (fully) supported by RFBR grant 18-35-20036.</p>

2001 ◽  
Vol 1 ◽  
pp. 122-129 ◽  
Author(s):  
Alan Olness ◽  
Dian Lopez ◽  
David Archer ◽  
Jason Cordes ◽  
Colin Sweeney ◽  
...  

Mineralization of soil organic matter is governed by predictable factors with nitrate-N as the end product. Crop production interrupts the natural balance, accelerates mineralization of N, and elevates levels of nitrate-N in soil. Six factors determine nitrate-N levels in soils: soil clay content, bulk density, organic matter content, pH, temperature, and rainfall. Maximal rates of N mineralization require an optimal level of air-filled pore space. Optimal air-filled pore space depends on soil clay content, soil organic matter content, soil bulk density, and rainfall. Pore space is partitioned into water- and air-filled space. A maximal rate of nitrate formation occurs at a pH of 6.7 and rather modest mineralization rates occur at pH 5.0 and 8.0. Predictions of the soil nitrate-N concentrations with a relative precision of 1 to 4 μg N g–1of soil were obtained with a computerized N fertilizer decision aid. Grain yields obtained using the N fertilizer decision aid were not measurably different from those using adjacent farmer practices, but N fertilizer use was reduced by >10%. Predicting mineralization in this manner allows optimal N applications to be determined for site-specific soil and weather conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1567
Author(s):  
Haydee Peña ◽  
Heysa Mendoza ◽  
Fernando Diánez ◽  
Mila Santos

This work studies variables measured from the first phase of composting through the acquisition of the final product, with the goal of identifying those that are more strongly related to quality and are most useful for developing an index. The necessity to establish quality control procedures thus exists for the classification of raw materials in the same way as for the finished products. To accomplish this, three mixtures were prepared, with the goal of achieving a C/N ratio of 30 and a moisture content of 60%. The primary component of each mixture was: fruit processing waste (C1), sewage sludge from the food industry (C2), and the manufacturing waste of fried foods (C3). Temperatures were measured over 107 days, with the corresponding data fit to a logistical model where T °C ~ α / ((1 + exp (− (Time − β) / − γ))) + δ, with interaction compost * time being statistically significant (p < 0.001). This allowed for the temperatures, in keeping with health concerns, to be confirmed. Likewise, a linear regression analysis demonstrated the decomposition of organic matter at 0.82%/week. Statistically, the parameters, measured during the process, with the least variability were selected, which differed in the average contrasts: germination index (cucumber), electrical conductivity, and average moisture. A principal component analysis (PCA) and Spearman’s correlation analysis revealed the best Germination Index (GI) values for C1, due to lower electrical conductivity (EC) and bulk density (Bd) along with higher organic matter content (TOM). For its part, C2 induced a higher Relative emergence (RE) of the cucumber thanks to its higher content of total nitrogen (TN) and lower contribution of Cu, Zn and K. C3 showed a higher presence of salts, less favorable physical characteristics (>Bd and <TPS, total pore space) and higher content of Zn and Cu. Composting carried out with appropriate mixtures can offer high-quality products for use as fertiliser, in soil restoration, and as an alternative substrate to peat and virgin mountain soil.


2016 ◽  
Vol 30 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Ewa A. Czyż ◽  
Anthony R. Dexter

Abstract Soil bulk density was investigated as a function of soil contents of clay and organic matter in arable agricultural soils at a range of locations. The contents of clay and organic matter were used in an algorithmic procedure to calculate the amounts of clay-organic complex in the soils. Values of soil bulk density as a function of soil organic matter content were used to estimate the amount of pore space occupied by unit amount of complex. These estimations show that the effective density of the clay-organic matter complex is very low with a mean value of 0.17 ± 0.04 g ml−1 in arable soils. This value is much smaller than the soil bulk density and smaller than any of the other components of the soil considered separately (with the exception of the gas content). This low value suggests that the clay-soil complex has an extremely porous and open structure. When the complex is considered as a separate phase in soil, it can account for the observed reduction of bulk density with increasing content of organic matter.


2021 ◽  
Vol 71 ◽  
pp. 125-138
Author(s):  
Fawzi M.O. Albeyati ◽  
◽  
Rzger A. Abdula ◽  
Rushdy S. Othman ◽  

Thirty four cuttings samples from the Jurassic rock succession in well Balad-1 in the Balad Oil Field, Central Iraq have been collected. Using various organic geochemical techniques, the organic matter’s quantity, quality, maturity, and their source rock’s depositional setting were determined. The samples were evaluated to determine the amount of their organic matter content, type of organic matter, δ13C carbon isotopes abundance for both saturated and aromatic, and molecular properties. The results of organic geochemistry analysis show that Sargelu, Gotnia, and Chia Gara formations contain fair to decent amounts of organic matter. Naokelekan Formation encompasses fair to excellent organic matter, while Najmah Formation comprises very high to exceptional organic matter. The analyzed samples revealed the existence of kerogen types III and II/III mainly within oil window. Thermal maturity related biomarkers are in a good agreement with Rock-Eval parameters, but did not reach equilibrium phase. Source related biomarkers show that these rock units rich in organic matter were mainly deposited in an anoxic marine depositional setting which consists of carbonate influenced by terrestrial input.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 320
Author(s):  
Evgeniya Leushina ◽  
Timur Bulatov ◽  
Elena Kozlova ◽  
Ivan Panchenko ◽  
Andrey Voropaev ◽  
...  

The present work is devoted to geochemical studies of the Bazhenov Formation in the north of the West Siberian Petroleum Basin. The object is the Upper Jurassic–Lower Cretaceous section, characterized by significant variations in total organic carbon content and petroleum generation potential of organic matter at the beginning of the oil window. The manuscript presents the integration of isotopic and geochemical analyses aimed at the evaluation of the genesis of the rocks in the peripheral part of the Bazhenov Sea and reconstruction of paleoenvironments that controlled the accumulation of organic matter in sediments, its composition and diagenetic alterations. According to the obtained data, the sediments were accumulated under marine conditions with a generally moderate and periodically increasing terrigenous influx. The variations in organic matter composition are determined by redox conditions and terrigenous input which correlate with the eustatic sea level changes during transgressive/regressive cycles and activation of currents. Transgression is associated with an intensive accumulation of organic matter under anoxic to euxinic conditions and insignificant influence of terrigenous sources, resulting in the formation of rocks with oil-generating properties. During the regression periods, the terrigenous sedimentation increased along with the dissolved oxygen concentration, and deposits with low organic matter content and gas-generating properties were formed.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 277
Author(s):  
Natalya Tanykova ◽  
Yuliya Petrova ◽  
Julia Kostina ◽  
Elena Kozlova ◽  
Evgenia Leushina ◽  
...  

The study of organic matter content and composition in source rocks using the methods of organic geochemistry is an important part of unconventional reservoir characterization. The aim of this work was the structural group analysis of organic matter directly in the source rock in combination with a quantitative assessment and surface distribution analysis of the rock sample by FTIR spectroscopy and FTIR microscopy. We have developed new experimental procedures for semi-quantitative assessment of the organic matter content, composition and distribution in the source rocks and applied these procedures for the study of the samples from the Bazhenov shale formation (West Siberia, Russia). The results have been verified using the data from the study of organic matter obtained by Rock-Eval pyrolysis and differential thermal analysis. The obtained results demonstrate the prospects of FTIR spectroscopy and FTIR microscopy application for non-destructive and express analysis of the chemical structure and distribution of organic matter in rocks.


1963 ◽  
Vol 11 (4) ◽  
pp. 250-263 ◽  
Author(s):  
P. Boekel

Tabular and graphical data show the effect of organic-matter levels (1-7%) on intrinsic soil structure (lower & upper plastic limit, moisture content atpF2) & actual soil structure (pore space, air content), & on the effect of organic manuring (farmyard manure, town refuse, green manure, ley) on structural properties. An increase in organic-matter content decreased the slaking sensitivity of soils, increased resistance to plastic deformation caused by mechanical forces on heavy clays under wet conditions, & improved actual structure by 0.6-0.7 points (visual estimation) for each per-cent organic matter. Lowest organic-matter content, providing good resistance to mechanical breakdown & giving proper structure for good plant growth, was required on a clay soil in which the 16 micro particles ranged between 15 & 30%, depending on soil treatment. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Junhui Luo ◽  
Yong Wu ◽  
Decai Mi ◽  
Qiongyao Ye ◽  
Haifeng Huang ◽  
...  

Carbonaceous rock is a special soft rock containing TOC organic carbon 6%∼40%. In order to reveal the influence of engineering characteristics of carbonaceous rock on the engineering construction, firstly the stratigraphic distribution of carbonaceous Rocks in Guangxi is investigated, and the genetic mechanism and tectonic environment of carbonaceous rocks are discussed. Secondly, the influence of pore microstructure on the disintegration characteristics of carbonaceous rocks is analyzed. The role of geochemical characteristics of carbonaceous rocks (mineral composition, TOC total organic matter content, and type) on engineering properties is revealed. Finally, combined with the distribution, structure, microstructure, and microscopic characteristics of the previous studies, the disintegration mechanism of carbonaceous rocks in water swelling and heat dehydration is discussed. The results are as follows. (1) Carbonaceous rocks in Guangxi are mainly distributed in Devonian, Carboniferous, and Cambrian systems. It is mainly formed in anoxic and reductive deep water basins, slopes, and relatively confined coastal lagoons and swamps. The carbonaceous rocks in the Devonian Luofu formation are most typical. (2) The pores of carbonaceous rocks are divided into mineral pores, organic matter pores, and microfracture, which are mainly mineral pores. The more developed pores in mineral pores are intragranular dissolved pores. Secondly, mineral intergranular pores and a small amount of intergranular dissolution pores and less inner pores. Organic matter porosity increases with the increase of shale organic carbon content and maturity, but the shale porosity and adsorption capacity decrease when shale maturity reaches more than 2.4%. (3) Clay minerals in carbonaceous shale mainly consist of illite and illite/montmorillonite layer, which have water swelling and heat dehydration. The total average value of TOC (total organic matter content) is more than 1%, which belongs to carbonaceous rocks of medium high grade hydrocarbon source rocks. Organic matter is mainly dominated by type I and II1-II2 type with large hydrocarbon generating potential, which is prone to oxidation-reduction reaction and cause rock disintegration.


2015 ◽  
pp. 42-58
Author(s):  
E. B. Skvortsova ◽  
K. N. Abrosimov ◽  
K. A. Romanenko

The soils are distinguished by the presence and the profile distribution pattern of such pedogenic parameters as the organic matter content, available pedofeatures, structural state of the soil mass, etc. They differ in the organization of the pore space throughout the soil profile as well. Under discussion are results of computer micromorphometric analysis of fine macropores d = 0.2-2.0 mm in thin sections of vertical orientation from samples taken in genetic horizons of podzolic, soddy podzolic, gray forest soils and chernozems at the territory of European Russia. The profile changes in voids were analyzed using the most informative morphometric parameters such as the total area of the studied voids in thin sections, the content of fissure-like voids and those of vertical and/or horizontal orientation. The soil types under study showed differences in profile distribution of the above parameters. By analogy with the profile of carbonates, salts, organic matter it is proposed to recognize diagnostic profiles of the pore space represented as a system of voids in genetic horizons of the soil profile. Empiric profiles of the pore space reveal a great diversity. The most complicated organization of the pore space is inherent to soddy podzolic soils, the most simple “smoothed” profiles are characteristic of typical chernozems. The expert qualitative typization showed that the eluvial-illuvial and accumulative-eluvial-illuvial types are dominant among the studied empiric profiles of the pore space (42 and 30% respectively), what is explained by prevailing texture-differentiated soils. On the other hand, it makes possible to use the profile of the pore space as a diagnostic parameter of soils and soil formation processes.


Sign in / Sign up

Export Citation Format

Share Document