Timing and magnitude of Southern Ocean sea ice/carbon cycle feedbacks over the last eight glacial cycles

Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Eun Young Kwon ◽  
Tobias Friedrich

<p class="p1"><span class="s1">The Southern Ocean (SO) played a prominent role in the exchange of carbon between ocean and atmosphere on glacial timescales through its regulation of deep ocean ventilation. Previous studies indicated that SO sea ice could dynamically link several processes of carbon sequestration, but these studies relied on models with simplified ocean and sea ice dynamics or snapshot simulations with general circulation models. Here we use a transient run of the LOVECLIM intermediate complexity climate model, covering the past eight glacial cycles, to investigate the orbital-scale dynamics of deep ocean ventilation changes due to SO sea ice. Cold climates increase sea ice cover, sea-ice export, and Antarctic Bottom Water formation, which are accompanied by increased SO upwelling, stronger poleward export of Circumpolar Deep Water, and a reduction of the atmospheric exposure time of surface waters by a factor of ten. Moreover, increased brine formation around Antarctica enhances deep ocean stratification, which could act to decrease vertical mixing by a factor of four compared to the current climate. The impact of the two mechanisms on carbon sequestration was then tested within a steady-state carbon cycle. The two mechanisms combined can reduce atmospheric carbon by 40 ppm, of which approximately 30 ppm is due to ocean stratification. Moreover, ocean stratification from increased SO sea ice production acts early within glacial cycles to amplify the carbon cycle response.</span></p>

2020 ◽  
Vol 117 (9) ◽  
pp. 4498-4504 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Eun Young Kwon ◽  
Tobias Friedrich

The Southern Ocean (SO) played a prominent role in the exchange of carbon between ocean and atmosphere on glacial timescales through its regulation of deep ocean ventilation. Previous studies indicated that SO sea ice could dynamically link several processes of carbon sequestration, but these studies relied on models with simplified ocean and sea ice dynamics or snapshot simulations with general circulation models. Here, we use a transient run of an intermediate complexity climate model, covering the past eight glacial cycles, to investigate the orbital-scale dynamics of deep ocean ventilation changes due to SO sea ice. Cold climates increase sea ice cover, sea ice export, and Antarctic Bottom Water formation, which are accompanied by increased SO upwelling, stronger poleward export of Circumpolar Deep Water, and a reduction of the atmospheric exposure time of surface waters by a factor of 10. Moreover, increased brine formation around Antarctica enhances deep ocean stratification, which could act to decrease vertical mixing by a factor of four compared with the current climate. Sensitivity tests with a steady-state carbon cycle model indicate that the two mechanisms combined can reduce atmospheric carbon by 40 ppm, with ocean stratification acting early within a glacial cycle to amplify the carbon cycle response.


2021 ◽  
Author(s):  
Jinlong Du ◽  
Xu Zhang ◽  
Ying Ye ◽  
Christoph Völker ◽  
Jun Tian

<p>The mechanisms of atmospheric CO2 draw-down by ~90 ppm during glacial cycles have been one of the most contentious questions in the past several decades. Processes in the Southern Ocean (SO) have been suggested to be at the heart, while the North Atlantic (NA) is recently proposed to be critical during glacial periods as well. However, in a full course of glacial cycles, the individual and synergic roles of these two regions remain enigmatic. Using a state-of-the-art biogeochemical model (MITgcm-REcoM2) associated with an interactive CO<sub>2</sub> module, we examined the impact of the onset of individual mechanisms and combinations of them on atmospheric CO<sub>2</sub>. Here we show that SO controls carbon sequestration in both hemispheres. In sensitivity runs with respect to mechanisms happening during glacial inceptions, cooling in SO contributes to a larger portion of CO<sub>2</sub> draw-down than cooling in NA, by shortening the surface water exposure time, while the early sea ice expansion tends to weaken the carbon uptake. The efficiency of surface carbon storage in the North Atlantic depends on the volume of Antarctic bottom water and reaches its maximum when the glacial stratification is well developed during glacial maxima.  SO cooling and sea ice expansion strongly promote the formation of AABW and the full development of the glacial stratification. Furthermore, increased dust deposition during the glacial maxima raises the contribution of the Southern Ocean in the global biological carbon pump, leading to a higher efficiency of the biological carbon pump. And the maximal expanded sea ice suppresses local carbon leakage.</p><p> </p><p> </p><p> </p>


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2021 ◽  
Vol 9 ◽  
Author(s):  
D. Zúñiga ◽  
A. Sanchez-Vidal ◽  
M. M. Flexas ◽  
D. Carroll ◽  
M. M. Rufino ◽  
...  

Physical and biogeochemical processes in the Southern Ocean are fundamental for modulating global climate. In this context, a process-based understanding of how Antarctic diatoms control primary production and carbon export, and hence global-ocean carbon sequestration, has been identified as a scientific priority. Here we use novel sediment trap observations in combination with a data-assimilative ocean biogeochemistry model (ECCO-Darwin) to understand how environmental conditions trigger diatom ecology in the iron-fertilized southern Scotia Sea. We unravel the role of diatoms assemblage in controlling the biogeochemistry of sinking material escaping from the euphotic zone, and discuss the link between changes in upper-ocean environmental conditions and the composition of settling material exported from the surface to 1,000 m depth from March 2012 to January 2013. The combined analysis of in situ observations and model simulation suggests that an anomalous sea-ice episode in early summer 2012–2013 favored (via restratification due to sea-ice melt) an early massive bloom of Corethron pennatum that rapidly sank to depth. This event drove high biogenic silicon to organic carbon export ratios, while modulating the carbon and nitrogen isotopic signals of sinking organic matter reaching the deep ocean. Our findings highlight the role of diatom ecology in modulating silicon vs. carbon sequestration efficiency, a critical factor for determining the stoichiometric relationship of limiting nutrients in the Southern Ocean.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2011 ◽  
Vol 7 (3) ◽  
pp. 1887-1934 ◽  
Author(s):  
N. Bouttes ◽  
D. Paillard ◽  
D. M. Roche ◽  
C. Waelbroeck ◽  
M. Kageyama ◽  
...  

Abstract. During the last termination (from ~18 000 yr ago to ~9000 yr ago) the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a climate-carbon coupled model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependant diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 yr ago, when the Antarctic ice sheet extent was at its maximum. Sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario it is possible to simulate both the amplitude and timing of the CO2 increase during the last termination in agreement with data. The atmospheric δ13C appears to be highly sensitive to changes in the terrestrial biosphere, underlining the need to better constrain the vegetation evolution during the termination.


2021 ◽  
Author(s):  
Wayne de Jager ◽  
Marcello Vichi

Abstract. Sea-ice extent variability, a measure based on satellite-derived sea ice concentration measurements, has traditionally been used as an essential climate variable to evaluate the impact of climate change on polar regions. However, concentration- based measurements of ice variability do not allow to discriminate the relative contributions made by thermodynamic and dynamic processes, prompting the need to use sea-ice drift products and develop alternative methods to quantify changes in sea ice dynamics that would indicate trends in Antarctic ice characteristics. Here, we present a new method to automate the detection of rotational drift features in Antarctic sea ice at daily timescales using currently available remote sensing ice motion products from EUMETSAT OSI SAF. Results show that there is a large discrepancy in the detection of cyclonic drift features between products, both in terms of intensity and year-to-year distributions, thus diminishing the confidence at which ice drift variability can be further analysed. Product comparisons showed that there was good agreement in detecting anticyclonic drift, and cyclonic drift features were measured to be 1.5–2.2 times more intense than anticyclonic features. The most intense features were detected by the merged product, suggesting that the processing chain used for this product could be injecting additional rotational momentum into the resultant drift vectors. We conclude that it is therefore necessary to better understand why the products lack agreement before further trend analysis of these drift features and their climatic significance can be assessed.


2003 ◽  
Vol 20 (7-8) ◽  
pp. 741-757 ◽  
Author(s):  
S. Vavrus ◽  
S. P. Harrison

Sign in / Sign up

Export Citation Format

Share Document