scholarly journals Timing and magnitude of Southern Ocean sea ice/carbon cycle feedbacks

2020 ◽  
Vol 117 (9) ◽  
pp. 4498-4504 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Eun Young Kwon ◽  
Tobias Friedrich

The Southern Ocean (SO) played a prominent role in the exchange of carbon between ocean and atmosphere on glacial timescales through its regulation of deep ocean ventilation. Previous studies indicated that SO sea ice could dynamically link several processes of carbon sequestration, but these studies relied on models with simplified ocean and sea ice dynamics or snapshot simulations with general circulation models. Here, we use a transient run of an intermediate complexity climate model, covering the past eight glacial cycles, to investigate the orbital-scale dynamics of deep ocean ventilation changes due to SO sea ice. Cold climates increase sea ice cover, sea ice export, and Antarctic Bottom Water formation, which are accompanied by increased SO upwelling, stronger poleward export of Circumpolar Deep Water, and a reduction of the atmospheric exposure time of surface waters by a factor of 10. Moreover, increased brine formation around Antarctica enhances deep ocean stratification, which could act to decrease vertical mixing by a factor of four compared with the current climate. Sensitivity tests with a steady-state carbon cycle model indicate that the two mechanisms combined can reduce atmospheric carbon by 40 ppm, with ocean stratification acting early within a glacial cycle to amplify the carbon cycle response.

2020 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Eun Young Kwon ◽  
Tobias Friedrich

<p class="p1"><span class="s1">The Southern Ocean (SO) played a prominent role in the exchange of carbon between ocean and atmosphere on glacial timescales through its regulation of deep ocean ventilation. Previous studies indicated that SO sea ice could dynamically link several processes of carbon sequestration, but these studies relied on models with simplified ocean and sea ice dynamics or snapshot simulations with general circulation models. Here we use a transient run of the LOVECLIM intermediate complexity climate model, covering the past eight glacial cycles, to investigate the orbital-scale dynamics of deep ocean ventilation changes due to SO sea ice. Cold climates increase sea ice cover, sea-ice export, and Antarctic Bottom Water formation, which are accompanied by increased SO upwelling, stronger poleward export of Circumpolar Deep Water, and a reduction of the atmospheric exposure time of surface waters by a factor of ten. Moreover, increased brine formation around Antarctica enhances deep ocean stratification, which could act to decrease vertical mixing by a factor of four compared to the current climate. The impact of the two mechanisms on carbon sequestration was then tested within a steady-state carbon cycle. The two mechanisms combined can reduce atmospheric carbon by 40 ppm, of which approximately 30 ppm is due to ocean stratification. Moreover, ocean stratification from increased SO sea ice production acts early within glacial cycles to amplify the carbon cycle response.</span></p>


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2011 ◽  
Vol 7 (3) ◽  
pp. 771-800 ◽  
Author(s):  
T. Tschumi ◽  
F. Joos ◽  
M. Gehlen ◽  
C. Heinze

Abstract. The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.


Author(s):  
T. Dunkley Jones ◽  
A. Ridgwell ◽  
D. J. Lunt ◽  
M. A. Maslin ◽  
D. N. Schmidt ◽  
...  

The Palaeocene–Eocene thermal maximum (PETM), a rapid global warming event and carbon-cycle perturbation of the early Palaeogene, provides a unique test of climate and carbon-cycle models as well as our understanding of sedimentary methane hydrate stability, albeit under conditions very different from the modern. The principal expression of the PETM in the geological record is a large and rapid negative excursion in the carbon isotopic composition of carbonates and organic matter from both marine and terrestrial environments. Palaeotemperature proxy data from across the PETM indicate a coincident increase in global surface temperatures of approximately 5–6°C. Reliable estimates of atmospheric CO 2 changes and global warming through past transient climate events can provide an important test of the climate sensitivities reproduced by state-of-the-art atmosphere–ocean general circulation models. Here, we synthesize the available carbon-cycle model estimates of the magnitude of the carbon input to the ocean–atmosphere–biosphere system, and the consequent atmospheric p CO 2 perturbation, through the PETM. We also review the theoretical mass balance arguments and available sedimentary evidence for the role of massive methane hydrate dissociation in this event. The plausible range of carbon mass input, approximately 4000–7000 PgC, strongly suggests a major alternative source of carbon in addition to any contribution from methane hydrates. We find that the potential range of PETM atmospheric p CO 2 increase, combined with proxy estimates of the PETM temperature anomaly, does not necessarily imply climate sensitivities beyond the range of state-of-the-art climate models.


2010 ◽  
Vol 6 (5) ◽  
pp. 1895-1958 ◽  
Author(s):  
T. Tschumi ◽  
F. Joos ◽  
M. Gehlen ◽  
C. Heinze

Abstract. The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global three-dimensional ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during the early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.


2011 ◽  
Vol 11 (4) ◽  
pp. 1457-1471 ◽  
Author(s):  
M. Meinshausen ◽  
T. M. L. Wigley ◽  
S. C. B. Raper

Abstract. Intercomparisons of coupled atmosphere-ocean general circulation models (AOGCMs) and carbon cycle models are important for galvanizing our current scientific knowledge to project future climate. Interpreting such intercomparisons faces major challenges, not least because different models have been forced with different sets of forcing agents. Here, we show how an emulation approach with MAGICC6 can address such problems. In a companion paper (Meinshausen et al., 2011a), we show how the lower complexity carbon cycle-climate model MAGICC6 can be calibrated to emulate, with considerable accuracy, globally aggregated characteristics of these more complex models. Building on that, we examine here the Coupled Model Intercomparison Project's Phase 3 results (CMIP3). If forcing agents missed by individual AOGCMs in CMIP3 are considered, this reduces ensemble average temperature change from pre-industrial times to 2100 under SRES A1B by 0.4 °C. Differences in the results from the 1980 to 1999 base period (as reported in IPCC AR4) to 2100 are negligible, however, although there are some differences in the trajectories over the 21st century. In a second part of this study, we consider the new RCP scenarios that are to be investigated under the forthcoming CMIP5 intercomparison for the IPCC Fifth Assessment Report. For the highest scenario, RCP8.5, relative to pre-industrial levels, we project a median warming of around 4.6 °C by 2100 and more than 7 °C by 2300. For the lowest RCP scenario, RCP3-PD, the corresponding warming is around 1.5 °C by 2100, decreasing to around 1.1 °C by 2300 based on our AOGCM and carbon cycle model emulations. Implied cumulative CO2 emissions over the 21st century for RCP8.5 and RCP3-PD are 1881 GtC (1697 to 2034 GtC, 80% uncertainty range) and 381 GtC (334 to 488 GtC), when prescribing CO2 concentrations and accounting for uncertainty in the carbon cycle. Lastly, we assess the reasons why a previous MAGICC version (4.2) used in IPCC AR4 gave roughly 10% larger warmings over the 21st century compared to the CMIP3 average. We find that forcing differences and the use of slightly too high climate sensitivities inferred from idealized high-forcing runs were the major reasons for this difference.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2013 ◽  
Vol 7 (2) ◽  
pp. 451-468 ◽  
Author(s):  
V. Zunz ◽  
H. Goosse ◽  
F. Massonnet

Abstract. Observations over the last 30 yr have shown that the sea ice extent in the Southern Ocean has slightly increased since 1979. Mechanisms responsible for this positive trend have not been well established yet. In this study we tackle two related issues: is the observed positive trend compatible with the internal variability of the system, and do the models agree with what we know about the observed internal variability? For that purpose, we analyse the evolution of sea ice around the Antarctic simulated by 24 different general circulation models involved in the 5th Coupled Model Intercomparison Project (CMIP5), using both historical and hindcast experiments. Our analyses show that CMIP5 models respond to the forcing, including the one induced by stratospheric ozone depletion, by reducing the sea ice cover in the Southern Ocean. Some simulations display an increase in sea ice extent similar to the observed one. According to models, the observed positive trend is compatible with internal variability. However, models strongly overestimate the variance of sea ice extent and the initialization methods currently used in models do not improve systematically the simulated trends in sea ice extent. On the basis of those results, a critical role of the internal variability in the observed increase of sea ice extent in the Southern Ocean could not be ruled out, but current models results appear inadequate to test more precisely this hypothesis.


2021 ◽  
Author(s):  
Xinping Xu ◽  
Shengping He ◽  
Yongqi Gao ◽  
Botao Zhou ◽  
Huijun Wang

AbstractPrevious modelling and observational studies have shown discrepancies in the interannual relationship of winter surface air temperature (SAT) between Arctic and East Asia, stimulating the debate about whether Arctic change can influence midlatitude climate. This study uses two sets of coordinated experiments (EXP1 and EXP2) from six different atmospheric general circulation models. Both EXP1 and EXP2 consist of 130 ensemble members, each of which in EXP1 (EXP2) was forced by the same observed daily varying sea ice and daily varying (daily climatological) sea surface temperature (SST) for 1982–2014 but with different atmospheric initial conditions. Large spread exists among ensemble members in simulating the Arctic–East Asian SAT relationship. Only a fraction of ensemble members can reproduce the observed deep Arctic warming–cold continent pattern which extends from surface to upper troposphere, implying the important role of atmospheric internal variability. The mechanisms of deep Arctic warming and shallow Arctic warming are further distinguished. Arctic warming aloft is caused primarily by poleward moisture transport, which in conjunction with the surface warming coupled with sea ice melting constitutes the surface-amplified deep Arctic warming throughout the troposphere. These processes associated with the deep Arctic warming may be related to the forcing of remote SST when there is favorable atmospheric circulation such as Rossby wave train propagating from the North Atlantic into the Arctic.


Sign in / Sign up

Export Citation Format

Share Document