scholarly journals Impact of oceanic processes on the carbon cycle during the last termination

2011 ◽  
Vol 7 (3) ◽  
pp. 1887-1934 ◽  
Author(s):  
N. Bouttes ◽  
D. Paillard ◽  
D. M. Roche ◽  
C. Waelbroeck ◽  
M. Kageyama ◽  
...  

Abstract. During the last termination (from ~18 000 yr ago to ~9000 yr ago) the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a climate-carbon coupled model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependant diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 yr ago, when the Antarctic ice sheet extent was at its maximum. Sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario it is possible to simulate both the amplitude and timing of the CO2 increase during the last termination in agreement with data. The atmospheric δ13C appears to be highly sensitive to changes in the terrestrial biosphere, underlining the need to better constrain the vegetation evolution during the termination.

2012 ◽  
Vol 8 (1) ◽  
pp. 149-170 ◽  
Author(s):  
N. Bouttes ◽  
D. Paillard ◽  
D. M. Roche ◽  
C. Waelbroeck ◽  
M. Kageyama ◽  
...  

Abstract. During the last termination (from ~18 000 years ago to ~9000 years ago), the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a coupled climate-carbon model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependent diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 years ago, when the Antarctic ice sheet extent was at its maximum. In this scenario, we make the hypothesis that sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario, it is possible to simulate both the amplitude and timing of the long-term CO2 increase during the last termination in agreement with ice core data. The atmospheric δ13C appears to be highly sensitive to changes in the terrestrial biosphere, underlining the need to better constrain the vegetation evolution during the termination.


2021 ◽  
pp. 1-6
Author(s):  
Hao Luo ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Xiangshan Tian-Kunze ◽  
Lars Nerger ◽  
...  

Abstract To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.


2018 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g. 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multi-millennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speedup is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean-sea ice horizontal grid configuration that allows an increase of the ocean-sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasises model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates, and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


2019 ◽  
Vol 12 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g., 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multimillennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speed-up is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean–sea ice horizontal grid configuration that allows an increase of the ocean–sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasizes model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


2020 ◽  
Vol 117 (9) ◽  
pp. 4498-4504 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Eun Young Kwon ◽  
Tobias Friedrich

The Southern Ocean (SO) played a prominent role in the exchange of carbon between ocean and atmosphere on glacial timescales through its regulation of deep ocean ventilation. Previous studies indicated that SO sea ice could dynamically link several processes of carbon sequestration, but these studies relied on models with simplified ocean and sea ice dynamics or snapshot simulations with general circulation models. Here, we use a transient run of an intermediate complexity climate model, covering the past eight glacial cycles, to investigate the orbital-scale dynamics of deep ocean ventilation changes due to SO sea ice. Cold climates increase sea ice cover, sea ice export, and Antarctic Bottom Water formation, which are accompanied by increased SO upwelling, stronger poleward export of Circumpolar Deep Water, and a reduction of the atmospheric exposure time of surface waters by a factor of 10. Moreover, increased brine formation around Antarctica enhances deep ocean stratification, which could act to decrease vertical mixing by a factor of four compared with the current climate. Sensitivity tests with a steady-state carbon cycle model indicate that the two mechanisms combined can reduce atmospheric carbon by 40 ppm, with ocean stratification acting early within a glacial cycle to amplify the carbon cycle response.


2016 ◽  
Vol 29 (5) ◽  
pp. 1655-1672 ◽  
Author(s):  
Andrew G. Pauling ◽  
Cecilia M. Bitz ◽  
Inga J. Smith ◽  
Patricia J. Langhorne

ABSTRACT The possibility that recent Antarctic sea ice expansion resulted from an increase in freshwater reaching the Southern Ocean is investigated here. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, on average, precipitation minus evaporation (P − E) reaching the Southern Ocean has increased in CMIP5 models to a present value that is about greater than preindustrial times and 5–22 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves (119–544 ). Two sets of experiments were conducted from 1980 to 2013 in CESM1(CAM5), one of the CMIP5 models, artificially distributing freshwater either at the ocean surface to mimic iceberg melt or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes and an associated increase in sea ice area. Enhancing the freshwater input by an amount within the range of estimates of the Antarctic mass imbalance did not have any significant effect on either sea ice area magnitude or trend. Freshwater enhancement of raised the total sea ice area by 1 × 106 km2, yet this and even an enhancement of was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of freshwater injection.


2020 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Eun Young Kwon ◽  
Tobias Friedrich

<p class="p1"><span class="s1">The Southern Ocean (SO) played a prominent role in the exchange of carbon between ocean and atmosphere on glacial timescales through its regulation of deep ocean ventilation. Previous studies indicated that SO sea ice could dynamically link several processes of carbon sequestration, but these studies relied on models with simplified ocean and sea ice dynamics or snapshot simulations with general circulation models. Here we use a transient run of the LOVECLIM intermediate complexity climate model, covering the past eight glacial cycles, to investigate the orbital-scale dynamics of deep ocean ventilation changes due to SO sea ice. Cold climates increase sea ice cover, sea-ice export, and Antarctic Bottom Water formation, which are accompanied by increased SO upwelling, stronger poleward export of Circumpolar Deep Water, and a reduction of the atmospheric exposure time of surface waters by a factor of ten. Moreover, increased brine formation around Antarctica enhances deep ocean stratification, which could act to decrease vertical mixing by a factor of four compared to the current climate. The impact of the two mechanisms on carbon sequestration was then tested within a steady-state carbon cycle. The two mechanisms combined can reduce atmospheric carbon by 40 ppm, of which approximately 30 ppm is due to ocean stratification. Moreover, ocean stratification from increased SO sea ice production acts early within glacial cycles to amplify the carbon cycle response.</span></p>


Elem Sci Anth ◽  
2016 ◽  
Vol 4 ◽  
Author(s):  
R. Grimm ◽  
D. Notz ◽  
R.N. Glud ◽  
S. Rysgaard ◽  
K.D. Six

Abstract It has been suggested that geochemical processes related to sea-ice growth and melt might be important for the polar carbon cycle via the so called sea-ice carbon pump (SICP). The SICP affects the air-sea CO2 exchange by influencing the composition of dissolved inorganic carbon (DIC) and total alkalinity (TA) in the surface ocean. Here we quantify the strength of the SICP-induced air-sea CO2 flux using the global three-dimensional ocean-sea-ice-biogeochemical model MPIOM/HAMOCC. Simulations prescribing the range of observed DIC and TA concentrations in the sea ice were performed under two idealized climate scenarios for the present-day and the future oceanic and sea-ice state, both forced with a fixed atmospheric CO2 concentration. Model results indicate that the SICP-induced air-sea CO2 uptake increases with higher ratios of TA:DIC prescribed in the sea ice relative to the basic oceanic TA:DIC ratios. Independent of the modeled scenario, the simulated strength of the SICP is larger in the Antarctic than in the Arctic, because of more efficient export of brine-associated DIC from the Antarctic mixed layer. On an annual basis, we generally find an enhanced SICP-induced oceanic CO2 uptake in regions with net sea-ice melt, and enhanced SICP-induced oceanic CO2 out-gassing in regions with net sea-ice growth. These general regional patterns are modified further by the blockage of air-sea gas exchange through sea-ice coverage. Integrated over the sea-ice zones of both hemispheres, the SICP-induced oceanic CO2 uptake ranges from 2 to 14 Tg C yr−1, which is up to 7% of the simulated net CO2 uptake in polar regions, but far less than 1% of the current global oceanic CO2 uptake. Hence, while we find that the SICP plays a minor role in the modern global carbon cycle, it is of importance for the regional carbon cycle at high latitudes.


2014 ◽  
Vol 11 (12) ◽  
pp. 17543-17578 ◽  
Author(s):  
C. Lo Monaco ◽  
N. Metzl ◽  
F. D'Ovidio ◽  
J. Llort ◽  
C. Ridame

Abstract. Iron and light are the main factors limiting the biological pump of CO2 in the Southern Ocean. Iron fertilization experiments have demonstrated the potential for increased uptake of atmospheric CO2, but little is known about the evolution of fertilized environnements. This paper presents observations collected in one of the largest phytoplankton bloom of the Southern Ocean sustained by iron originating from the Kerguelen Plateau. We first complement previous studies by investigating the mechanisms that control air–sea CO2 fluxes over and downstream of the Kerguelen Plateau at the onset of the bloom based on measurements obtained in October–November 2011. These new observations show the rapid establishment of a strong CO2 sink in waters fertilized with iron as soon as vertical mixing is reduced. The magnitude of the CO2 sink was closely related to chlorophyll a and iron concentrations. Because iron concentration strongly depends on the distance from the iron source and the mode of delivery, we identified lateral advection as the main mechanism controlling air–sea CO2 fluxes downtream the Kerguelen Plateau during the growing season. In the southern part of the bloom, situated over the Plateau (iron source), the CO2 sink was stronger and spatially more homogeneous than in the plume offshore. However, we also witnessed a substantial reduction in the uptake of atmospheric CO2 over the Plateau following a strong winds event. Next, we used all the data available in this region in order to draw the seasonal evolution of air–sea CO2 fluxes. The CO2 sink is rapidly reduced during the course of the growing season, which we attribute to iron and silicic acid depletion. South of the Polar Front, where nutrients depletion is delayed, we suggest that the amplitude and duration of the CO2 sink is mainly controlled by vertical mixing. The impact of iron fertilization on air–sea CO2 fluxes is revealed by comparing the uptake of CO2 integrated over the productive season in the bloom, between 1 and 1.5 mol C m−2 yr−1, and in the iron-poor HNLC waters, where we found a typical value of 0.4 mol C m−2 yr−1. Extrapolating our results to the ice-free Southern Ocean (~50–60° S) suggests that iron fertilization of the whole area would increase the contemporay oceanic uptake of CO2 by less than 0.1 Pg C yr−1, i.e., less than 1% of the current anthropogenic CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document