The sensitivity of atmospheric blocking to changes in upstream latent heating

Author(s):  
Stephan Pfahl ◽  
Daniel Steinfeld ◽  
Maxi Boettcher ◽  
Richard Forbes

<p>Recent climatological studies based on trajectory calculations have pointed to an important role of latent heating during cloud formation for the dynamics of blocking anti-cyclones. However, the causal relationship between latent heating and blocking formation has not yet been fully elucidated. To explicitly study this causal relationship, we perform sensitivity simulations of selected blocking events with a global weather prediction model in which we artificially eliminate latent heating in clouds upstream of the blocking anti-cyclones. This elimination has substantial effects on the upper-tropospheric circulation in all case studies, but there is also significant case-to-case variability: some blocking systems do not develop at all without upstream latent heating, while for others the amplitude of the blocking anticyclones is merely reduced. This strong influence of latent heating on the upper-level circulation is due to a combination of two effects: the direct injection of air masses with low potential vorticity (PV) into the upper troposphere in strongly ascending “warm conveyor belt” airstreams, and the indirect effect owing to the interaction of the associated divergent outflow with the upper-level PV structure. The important influence of diabatic heating demonstrated with these experiments suggests that an accurate parameterization of microphysical processes in weather prediction and climate models is crucial for adequately representing blocking dynamics.</p>

2020 ◽  
Author(s):  
Daniel Steinfeld ◽  
Maxi Boettcher ◽  
Richard Forbes ◽  
Stephan Pfahl

Abstract. Recent climatological studies based on trajectory calculations have pointed to an important role of latent heating during cloud formation for the dynamics of anticyclonic circulation anomalies such as atmospheric blocking. However, the causal relationship between latent heating and blocking formation has not yet been fully elucidated. To explicitly study this causal relationship, we perform sensitivity simulations of five selected blocking events with a global weather prediction model in which we artificially eliminate latent heating in clouds upstream of the blocking anticyclones. This elimination has substantial effects on the upper-tropospheric circulation in all case studies, but there is also significant case-to-case variability: some blocking systems do not develop at all without upstream latent heating, while for others the amplitude of the blocking anticyclones is merely reduced. This strong influence of latent heating on the jet stream is due to the injection of air masses with low potential vorticity (PV) into the upper troposphere in strongly ascending warm conveyor belt airstreams, and the interaction of the associated divergent outflow with the upper-level PV structure. The important influence of diabatic heating demonstrated with these experiments suggests that an accurate parameterization of microphysical processes in weather prediction and climate models is crucial for adequately representing blocking dynamics.


2020 ◽  
Vol 1 (2) ◽  
pp. 405-426
Author(s):  
Daniel Steinfeld ◽  
Maxi Boettcher ◽  
Richard Forbes ◽  
Stephan Pfahl

Abstract. Recent studies have pointed to an important role of latent heating during cloud formation for the dynamics of anticyclonic circulation anomalies such as atmospheric blocking. However, the effect of latent heating on blocking formation and maintenance has not yet been fully elucidated. To explicitly study this cause-and-effect relationship, we perform sensitivity simulations of five selected blocking events with the Integrated Forecast System (IFS) global weather prediction model in which we artificially eliminate latent heating in clouds upstream of the blocking anticyclones. This elimination has substantial effects on the upper-tropospheric circulation in all case studies, but there is also significant case-to-case variability: some blocking systems do not develop at all without upstream latent heating, while for others the amplitude, size, and lifetime of the blocking anticyclones are merely reduced. This strong influence of latent heating on the midlatitude flow is due to the injection of air masses with low potential vorticity (PV) into the upper troposphere in strongly ascending “warm conveyor belt” airstreams and the interaction of the associated divergent outflow with the upper-level PV structure. The important influence of diabatic heating demonstrated with these experiments suggests that the accurate representation of moist processes in ascending airstreams in weather prediction and climate models is crucial for blocking dynamics.


2017 ◽  
Vol 74 (11) ◽  
pp. 3567-3590 ◽  
Author(s):  
Dominik Büeler ◽  
Stephan Pfahl

Abstract Extratropical cyclones develop because of baroclinic instability, but their intensification is often substantially amplified by diabatic processes, most importantly, latent heating (LH) through cloud formation. Although this amplification is well understood for individual cyclones, there is still need for a systematic and quantitative investigation of how LH affects cyclone intensification in different, particularly warmer and moister, climates. For this purpose, the authors introduce a simple diagnostic to quantify the contribution of LH to cyclone intensification within the potential vorticity (PV) framework. The two leading terms in the PV tendency equation, diabatic PV modification and vertical advection, are used to derive a diagnostic equation to explicitly calculate the fraction of a cyclone’s positive lower-tropospheric PV anomaly caused by LH. The strength of this anomaly is strongly coupled to cyclone intensity and the associated impacts in terms of surface weather. To evaluate the performance of the diagnostic, sensitivity simulations of 12 Northern Hemisphere cyclones with artificially modified LH are carried out with a numerical weather prediction model. Based on these simulations, it is demonstrated that the PV diagnostic captures the mean sensitivity of the cyclones’ PV structure to LH as well as parts of the strong case-to-case variability. The simple and versatile PV diagnostic will be the basis for future climatological studies of LH effects on cyclone intensification.


Cirrus ◽  
2002 ◽  
Author(s):  
Vitaly I. Khvorostyanov ◽  
Kenneth Sassen

The impact of cloudiness on the global radiative budget and its climatic consequences have been widely discussed during the last three decades. It was gradually recognized that the climatic effect of cloudiness depends on its height: low- and middle-level cloudiness have a total cooling effect on the Earth climatic system, while the upper-level clouds, cirrus, may have mostly a warming effect (IPCC 1995). The net effect of cirrus (i.e., warming or cooling), is much less clear because neither their microphysical and optical properties, nor the processes that govern their formation, are well understood and parameterized in climate models. These uncertainties have stimulated several major field projects performed within the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer 1991) with subsequent data analysis reports [e.g., FIRE IFO-I (1990), FIRE IFO-II (1995), and EUCREX (Raschke et al. 1996)]. The relevant theoretical works, and even the simplest climate models, indicate that the climatic impact of cirrus depends on their microstructure: clouds composed of small crystals with effective radii less than about 16 μm have a total cooling effect, but clouds of larger crystals have a warming effect (Stephens et al. 1990). It was shown that the total cloud forcing at the top of the atmosphere (TOA) is positive from a few to a few tens of watts per square meter for the large crystals and decreases with decreasing crystal radius (Fu and Liou 1993). Most of the previous theoretical studies of cirrus radiative properties, after choosing some model of microphysics and some values for the mass extinction and absorption coefficients, then prescribed them to the whole cloud, neglecting any vertical variations. Simulations with general circulation models (GCMs) showed that cirrus clouds with their optical properties parameterized in such a way (i.e., constant with height) have a total warming effect and positive feedbacks with respect to greenhouse gas-induced global warming (e.g., Ramanathan et al. 1983; Wetherald and Manabe 1988). Today, the estimation of the warming/cooling effect of cirrus has become even more complicated due to two factors. First, for many years the usual in situ probes allowed the measurement of ice crystals with radii only larger than 25-50 μm, so the smallest and most optically and radiatively active crystals were unresolved.


2016 ◽  
Vol 56 ◽  
pp. 12.1-12.18 ◽  
Author(s):  
Guang J. Zhang ◽  
Xiaoliang Song

Abstract The microphysical processes inside convective clouds play an important role in climate. They directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts. The detrained water substance in turn affects the anvil cloud formation, upper-tropospheric water vapor distribution, and thus the atmospheric radiation budget. In global climate models, convective parameterization schemes have not explicitly represented microphysics processes in updrafts until recently. In this paper, the authors provide a review of existing schemes for convective microphysics parameterization. These schemes are broadly divided into three groups: tuning-parameter-based schemes (simplest), single-moment schemes, and two-moment schemes (most comprehensive). Common weaknesses of the tuning-parameter-based and single-moment schemes are outlined. Examples are presented from one of the two-moment schemes to demonstrate the performance of the scheme in simulating the hydrometeor distribution in convection and its representation of the effect of aerosols on convection.


2014 ◽  
Vol 14 (4) ◽  
pp. 1959-1971 ◽  
Author(s):  
T. Nygård ◽  
T. Valkonen ◽  
T. Vihma

Abstract. Humidity inversions have a high potential importance in the Arctic climate system, especially for cloud formation and maintenance, in wide spatial and temporal scales. Here we investigate the climatology and characteristics of humidity inversions in the Arctic, including their spatial and temporal variability, sensitivity to the methodology applied and differences from the Antarctic humidity inversions. The study is based on data of the Integrated Global Radiosonde Archive (IGRA) from 36 Arctic stations between the years 2000 and 2009. The results indicate that humidity inversions are present on multiple levels nearly all the time in the Arctic atmosphere. Almost half (48%) of the humidity inversions were found at least partly within the same vertical layer with temperature inversions, whereas the existence of the other half may, at least partly, be linked to uneven vertical distribution of horizontal moisture transport. A high atmospheric surface pressure was found to increase the humidity inversion occurrence, whereas relationships between humidity inversion properties and cloud cover were generally relatively weak, although for some inversion properties they were systematic. For example, humidity inversions occurred slightly more often and were deeper under clear sky than in overcast conditions for almost all stations. The statistics of Arctic humidity inversion properties, especially inversion strength, depth and base height, proved to be very sensitive to the instruments and methodology applied. For example, the median strength of the strongest inversion in a profile was twice as large as the median of all Arctic inversions. The most striking difference between the Arctic and Antarctic humidity inversions was the much larger range of the seasonal cycle of inversion properties in the Arctic. Our results offer a baseline for validation of weather prediction and climate models and also encourage further studies on humidity inversions due to the vital, but so far poorly understood, role of humidity inversions in Arctic cloud processes.


2013 ◽  
Vol 13 (8) ◽  
pp. 22575-22605 ◽  
Author(s):  
T. Nygård ◽  
T. Valkonen ◽  
T. Vihma

Abstract. Humidity inversions have a high potential importance in the Arctic climate system, especially for cloud formation and maintenance, in wide spatial and temporal scales. Here we investigate the climatology and characteristics of humidity inversions in the Arctic, including their spatial and temporal variability, sensitivity to the methodology applied and differences from the Antarctic humidity inversions. The study is based on data of the Integrated Global Radiosonde Archive (IGRA) from 36 Arctic stations between the years 2000–2009. The results indicate that humidity inversions are nearly all the time present on multiple levels in the Arctic atmosphere. Almost half (48%) of the humidity inversions were found at least partly within the same vertical layer with temperature inversions, whereas the existence of the other half may, at least partly, be linked to uneven vertical distribution of horizontal moisture transport. A high atmospheric surface pressure was found to increase the humidity inversion occurrence, whereas relationships between humidity inversion properties and cloud cover were generally relatively weak, although for some inversion properties systematic. The statistics of Arctic humidity inversion properties, especially inversion strength, depth and base height, proved to be very sensitive to the instruments and methodology applied. For example, the median strength of the strongest inversion in a profile was twice as large as the median of all Arctic inversions. The most striking difference between the Arctic and Antarctic humidity inversions was the much larger range of the seasonal cycle of inversion properties in the Arctic. Our results offer a baseline for validation of weather prediction and climate models and also encourage for further studies on humidity inversions due to the vital, but so far poorly understood, role of humidity inversions in Arctic cloud processes.


2007 ◽  
Vol 135 (6) ◽  
pp. 2168-2184 ◽  
Author(s):  
Gregory L. West ◽  
W. James Steenburgh ◽  
William Y. Y. Cheng

Abstract Spurious grid-scale precipitation (SGSP) occurs in many mesoscale numerical weather prediction models when the simulated atmosphere becomes convectively unstable and the convective parameterization fails to relieve the instability. Case studies presented in this paper illustrate that SGSP events are also found in the North American Regional Reanalysis (NARR) and are accompanied by excessive maxima in grid-scale precipitation, vertical velocity, moisture variables (e.g., relative humidity and precipitable water), mid- and upper-level equivalent potential temperature, and mid- and upper-level absolute vorticity. SGSP events in environments favorable for high-based convection can also feature low-level cold pools and sea level pressure maxima. Prior to 2003, retrospectively generated NARR analyses feature an average of approximately 370 SGSP events annually. Beginning in 2003, however, NARR analyses are generated in near–real time by the Regional Climate Data Assimilation System (R-CDAS), which is identical to the retrospective NARR analysis system except for the input precipitation and ice cover datasets. Analyses produced by the R-CDAS feature a substantially larger number of SGSP events with more than 4000 occurring in the original 2003 analyses. An oceanic precipitation data processing error, which resulted in a reprocessing of NARR analyses from 2003 to 2005, only partially explains this increase since the reprocessed analyses still produce approximately 2000 SGSP events annually. These results suggest that many NARR SGSP events are not produced by shortcomings in the underlying Eta Model, but by the specification of anomalous latent heating when there is a strong mismatch between modeled and assimilated precipitation. NARR users should ensure that they are using the reprocessed NARR analyses from 2003 to 2005 and consider the possible influence of SGSP on their findings, particularly after the transition to the R-CDAS.


2013 ◽  
Vol 70 (8) ◽  
pp. 2547-2565 ◽  
Author(s):  
Marie-Dominique Leroux ◽  
Matthieu Plu ◽  
David Barbary ◽  
Frank Roux ◽  
Philippe Arbogast

Abstract The rapid intensification of Tropical Cyclone (TC) Dora (2007, southwest Indian Ocean) under upper-level trough forcing is investigated. TC–trough interaction is simulated using a limited-area operational numerical weather prediction model. The interaction between the storm and the trough involves a coupled evolution of vertical wind shear and binary vortex interaction in the horizontal and vertical dimensions. The three-dimensional potential vorticity structure associated with the trough undergoes strong deformation as it approaches the storm. Potential vorticity (PV) is advected toward the tropical cyclone core over a thick layer from 200 to 500 hPa while the TC upper-level flow turns cyclonic from the continuous import of angular momentum. It is found that vortex intensification first occurs inside the eyewall and results from PV superposition in the thick aforementioned layer. The main pathway to further storm intensification is associated with secondary eyewall formation triggered by external forcing. Eddy angular momentum convergence and eddy PV fluxes are responsible for spinning up an outer eyewall over the entire troposphere, while spindown is observed within the primary eyewall. The 8-km-resolution model is able to reproduce the main features of the eyewall replacement cycle observed for TC Dora. The outer eyewall intensifies further through mean vertical advection under dynamically forced upward motion. The processes are illustrated and quantified using various diagnostics.


2012 ◽  
Vol 69 (11) ◽  
pp. 3350-3371 ◽  
Author(s):  
Christopher Melhauser ◽  
Fuqing Zhang

Abstract This study explores both the practical and intrinsic predictability of severe convective weather at the mesoscales using convection-permitting ensemble simulations of a squall line and bow echo event during the Bow Echo and Mesoscale Convective Vortex (MCV) Experiment (BAMEX) on 9–10 June 2003. Although most ensemble members—initialized with realistic initial condition uncertainties smaller than the NCEP Global Forecast System Final Analysis (GFS FNL) using an ensemble Kalman filter—forecast broad areas of severe convection, there is a large variability of forecast performance among different members, highlighting the limit of practical predictability. In general, the best-performing members tend to have a stronger upper-level trough and associated surface low, producing a more conducive environment for strong long-lived squall lines and bow echoes, once triggered. The divergence in development is a combination of a dislocation of the upper-level trough, surface low with corresponding marginal environmental differences between developing and nondeveloping members, and cold pool evolution by deep convection prior to squall line formation. To further explore the intrinsic predictability of the storm, a sequence of sensitivity experiments was performed with the initial condition differences decreased to nearly an order of magnitude smaller than typical analysis and observation errors. The ensemble forecast and additional sensitivity experiments demonstrate that this storm has a limited practical predictability, which may be further improved with more accurate initial conditions. However, it is possible that the true storm could be near the point of bifurcation, where predictability is intrinsically limited. The limits of both practical and intrinsic predictability highlight the need for probabilistic and ensemble forecasts for severe weather prediction.


Sign in / Sign up

Export Citation Format

Share Document