Comprehensive analysis of the March 7, 2019 Somogyszob, Hungary earthquake cluster

Author(s):  
Zoltán Wéber ◽  
Barbara Czecze ◽  
Zoltán Gráczer ◽  
Bálint Süle ◽  
Gyöngyvér Szanyi ◽  
...  

<div>A magnitude ML 4.0 earthquake struck southwest Hungary on March 7, 2019. The earthquake was reported to be felt in some 53 localities with maximum intensity V on the EMS scale. The earthquake was preceded by four foreshocks and followed by four aftershocks. The hypoDD solutions using differential travel times from waveform cross-correlation show significant improvements in event location. We were able to determine the moment tensor solutions for the main shock and one of the foreshocks and aftershocks, each representing thrust fault mechanism with a horizontal P-axis pointing towards N-NE. The obtained moment magnitudes range from Mw 1.5 to 3.8 with source radii between 100 and 500 m. The stress drop spans from 12 to 19 bars.</div><div> <div> <div> </div> </div> </div>

2021 ◽  
Vol 873 (1) ◽  
pp. 012029
Author(s):  
Indra Josua Purba ◽  
Iman Suardi ◽  
Gatut Daniarsyad ◽  
Defni Lasmita

Abstract On November 15, 2014, and November 14, 2019, two major earthquakes occurred in the Molucca Sea with a moment magnitude of Mw 7.0 and Mw 7.1, respectively. These earthquakes were caused by the convergence activity between the Sunda Plate and the Philippine Sea Plate which form a double subduction zone in the Molucca Sea. We carried out the moment tensor inversion using Kiwi Tools to analyze the source mechanism for both of the earthquakes. The results show a thrust fault mechanism with the strike, dip, and rake of the ruptured fault planes are 187°, 63°, 85° and 196°, 43°, 83°, for the first and second events, respectively. We refine the location of the two mainshocks and their aftershocks by performing hypocenter relocation using the double difference method. This resulted in NE-SW aftershocks distribution for both events which occured close to the Molucca Sea Plate boundaries with the mainshocks location are relatively close to each other (± 50.32 km). Finally, we calculate the Coulomb stress changes to analyze the triggering effect between the two major events and between the mainshock and its aftershocks for each event. The results show that the hypocenter of the November 14, 2019 earthquake is in the increased zone of Coulomb stress changes produced by the November 15, 2014 earthquake with the value of 1.2 bar. The aftershocks of both events also occurred in the increased Coulomb stress changes with the range value of 0.5 - 1.8 bar for the first event and 0.2 - 0.8 bar for the second event.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 292
Author(s):  
Maria Bobrova ◽  
Sergey Stanchits ◽  
Anna Shevtsova ◽  
Egor Filev ◽  
Vladimir Stukachev ◽  
...  

The heterogeneity of the rock fabric is a significant factor influencing the initiation and propagation of a hydraulic fracture (HF). This paper presents a laboratory study of HF created in six shale-like core samples provided by RITEK LLC collected from the same well, but at different depths. For each tested sample, we determined the breakdown pressure, the HF growth rate, and the expansion of the sample at the moment when the HF reaches the sample surface. Correlations were established between the HF parameters and the geomechanical characteristics of the studied samples, and deviations from the general relationships were explained by the influence of the rock matrix. The analysis of the moment tensor inversion of radiated acoustic emission (AE) signals allows us to separate AE signals with a dominant shear component from the signals with a significant tensile component. The direction of microcrack opening was determined, which is in good agreement with the results of the post-test X-ray CT analysis of the created HF. Thus, it has been shown that a combination of several independent laboratory techniques allows one to reliably determine the parameters that can be used for verification of hydraulic fracturing models.


1996 ◽  
Vol 86 (5) ◽  
pp. 1255-1269 ◽  
Author(s):  
Michael E. Pasyanos ◽  
Douglas S. Dreger ◽  
Barbara Romanowicz

Abstract Recent advances in broadband station coverage, continuous telemetry systems, moment-tensor procedures, and computer data-processing methods have given us the opportunity to automate the two regional moment-tensor methods employed at the UC Berkeley Seismographic Station for events in northern and central California. Preliminary solutions are available within minutes after an event has occurred and are subsequently human reviewed. We compare the solutions of the two methods to each other, as well as the automatic and revised solutions of each individual method. Efforts are being made to establish robust criteria for determining accurate solutions with human review and to fully automate the moment-tensor procedures into the already-existing automated earthquake-location system.


1989 ◽  
Vol 79 (2) ◽  
pp. 493-499
Author(s):  
Stuart A. Sipkin

Abstract The teleseismic long-period waveforms recorded by the Global Digital Seismograph Network from the two largest Superstition Hills earthquakes are inverted using an algorithm based on optimal filter theory. These solutions differ slightly from those published in the Preliminary Determination of Epicenters Monthly Listing because a somewhat different, improved data set was used in the inversions and a time-dependent moment-tensor algorithm was used to investigate the complexity of the main shock. The foreshock (origin time 01:54:14.5, mb 5.7, Ms 6.2) had a scalar moment of 2.3 × 1025 dyne-cm, a depth of 8 km, and a mechanism of strike 217°, dip 79°, rake 4°. The main shock (origin time 13:15:56.4, mb 6.0, Ms 6.6) was a complex event, consisting of at least two subevents, with a combined scalar moment of 1.0 × 1026 dyne-cm, a depth of 10 km, and a mechanism of strike 303°, dip 89°, rake −180°.


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


1982 ◽  
Vol 72 (2) ◽  
pp. 439-456
Author(s):  
Thorne Lay ◽  
Jeffrey W. Given ◽  
Hiroo Kanamori

Abstract The seismic moment and source orientation of the 8 November 1980 Eureka, California, earthquake (Ms = 7.2) are determined using long-period surface and body wave data obtained from the SRO, ASRO, and IDA networks. The favorable azimuthal distribution of the recording stations allows a well-constrained mechanism to be determined by a simultaneous moment tensor inversion of the Love and Rayleigh wave observations. The shallow depth of the event precludes determination of the full moment tensor, but constraining Mzx = Mzy = 0 and using a point source at 16-km depth gives a major double couple for period T = 256 sec with scalar moment M0 = 1.1 · 1027 dyne-cm and a left-lateral vertical strike-slip orientation trending N48.2°E. The choice of fault planes is made on the basis of the aftershock distribution. This solution is insensitive to the depth of the point source for depths less than 33 km. Using the moment tensor solution as a starting model, the Rayleigh and Love wave amplitude data alone are inverted in order to fine-tune the solution. This results in a slightly larger scalar moment of 1.28 · 1027 dyne-cm, but insignificant (<5°) changes in strike and dip. The rake is not well enough resolved to indicate significant variation from the pure strike-slip solution. Additional amplitude inversions of the surface waves at periods ranging from 75 to 512 sec yield a moment estimate of 1.3 ± 0.2 · 1027 dyne-cm, and a similar strike-slip fault orientation. The long-period P and SH waves recorded at SRO and ASRO stations are utilized to determine the seismic moment for 15- to 30-sec periods. A deconvolution algorithm developed by Kikuchi and Kanamori (1982) is used to determine the time function for the first 180 sec of the P and SH signals. The SH data are more stable and indicate a complex bilateral rupture with at least four subevents. The dominant first subevent has a moment of 6.4 · 1026 dyne-cm. Summing the moment of this and the next three subevents, all of which occur in the first 80 sec of rupture, yields a moment of 1.3 · 1027 dyne-cm. Thus, when the multiple source character of the body waves is taken into account, the seismic moment for the Eureka event throughout the period range 15 to 500 sec is 1.3 ± 0.2 · 1027 dyne-cm.


2021 ◽  
Author(s):  
Álvaro González

<p>Statistical seismology relies on earthquake catalogs as homogeneous and complete as possible. However, heterogeneities in earthquake data compilation and reporting are common and frequently are not adverted.</p><p>The Global Centroid Moment Tensor Catalog (www.globalcmt.org) is considered as the most homogeneous global database for large and moderate earthquakes occurred since 1976, and it has been used for developing and testing global and regional forecast models.</p><p>Changes in the method used for calculating the moment tensors (along with improvements in global seismological monitoring) define four eras in the catalog (1976, 1977-1985, 1986-2003 and 2004-present). Improvements are particularly stark since 2004, when intermediate-period surface waves started to be used for calculating the centroid solutions.</p><p>Fixed centroid depths, used when the solution for a free depth did not converge, have followed diverse criteria, depending on the era. Depth had to be fixed mainly for shallow earthquakes, so this issue is more common, e.g. in the shallow parts of subduction zones than in the deep ones. Until 2003, 53% of the centroids had depths calculated as a free parameter, compared to 78% since 2004.</p><p>Rake values have not been calculated homogenously either. Until 2003, the vertical-dip-slip components of the moment tensor were assumed as null when they could not be constrained by the inversion (for 3.3% of the earthquakes). This caused an excess of pure focal mechanisms: rakes of -90° (normal), 0° or ±180° (strike-slip) or +90° (thrust). Even disregarding such events, rake histograms until 2003 and since 2004 are not equivalent to each other.</p><p>The magnitude of completeness (<em>M</em><sub>c</sub>) of the catalog is analyzed here separately for each era. It clearly improved along time (average <em>M</em><sub>c</sub> values being ~6.4 in 1976, ~5.7 in 1977-1985, ~5.4 in 1986-2003, and ~5.0 since 2004). Maps of <em>M</em><sub>c</sub> for different eras show significant spatial variations.</p>


Sign in / Sign up

Export Citation Format

Share Document