Comparing different types of solar flares with radio bursts detected by SMOS

Author(s):  
Manuel Flores Soriano ◽  
Consuelo Cid

<p>SMOS is an Earth observing satellite that is been adapted to provide full polarization observations of the Sun at 1.4 GHz 24 hours a day. Its solar radio observations from the last decade will be released to the community by the middle of this year. In this presentation we show the capabilities of SMOS as a solar radio observatory and compare some of the most relevant radio bursts with data from GOES, LASCO, SDO and RSTN. We show how SMOS responds to different kinds of solar flares depending on their x-ray flux, and the kind of mass ejection or solar dimming that they have produced, if any. In addition to this we also show the potential of SMOS as a space weather tool to monitor GNSS satellites signal fades and to provide an early warning of Earth-directed coronal mass ejections.</p>

1968 ◽  
Vol 46 (10) ◽  
pp. S757-S760 ◽  
Author(s):  
R. P. Lin

The > 40-keV solar-flare electrons observed by the IMP III and Mariner IV satellites are shown to be closely correlated with solar radio and X-ray burst emission. In particular, intense type III radio bursts are observed to accompany solar electron-event flares. The energies of the electrons, the total number of electrons, and the size of the electron source at the sun can be inferred from radio observations. The characteristics of the electrons observed in interplanetary space are consistent with these radio observations. Therefore these electrons are identified as the exciting agents of the type III emission. It has been noted that the radio and X-ray bursts are part of the flash phase of flares. The observations indicate that a striking feature of the flash phase is the production of electrons of 10–100 keV energies.


2021 ◽  
Author(s):  
Theogene Ndacyayisenga ◽  
Ange Cynthia Umuhire ◽  
Jean Uwamahoro ◽  
Christian Monstein

Abstract. This article summarizes the results of an analysis of solar radio bursts detected by the e-Compound Astronomical Low cost Low-frequency Instrument for spectroscopy and Transportable Observatory (e-CALLISTO) spectrometer hosted by the University of Rwanda, College of Education. The data analysed were detected during the first year (2014–2015) of the instrument operation. The Atmospheric Imaging Assembly (AIA) images on board the Solar Dynamics Observatory (SDO) were used to check the location of propagating waves associated with type III radio bursts detected without solar flares. Using quick plots provided by the e-CALLISTO website, we found a total of 202 solar radio bursts detected by the CALLISTO station located in Rwanda. Among them, 5 are type IIs, 175 are type IIIs, and 22 type IVs radio bursts. It is found that all analysed type IIs and ∼37 % of type III bursts are associated with impulsive solar flares while Type IV radio bursts are poorly associated with flares. Furthermore, all of the analysed type II bursts are associated with CMEs which is consistent with the previous studies, and ∼44 % of type IIIs show association with CMEs. On the other hand it is observed that the majority of type IV radio bursts are believed to be originated from CME-driven shocks. Findings from this study confirms that solar radio bursts (SRBs) from ground observation and analysis constitute a clue to diagnose the space weather phenomena such as solar flare and CMEs and to some extent, they may serve as the advance warning of the related severe space weather hazards.


1994 ◽  
Vol 144 ◽  
pp. 283-284
Author(s):  
G. Maris ◽  
E. Tifrea

The type II solar radio bursts produced by a shock wave passing through the solar corona are one of the most frequently studied solar activity phenomena. The scientific interest in this type of phenomenon is due to the fact that the presence of this radio event in a solar flare is an almost certain indicator of a future geophysical effect. The origin of the shock waves which produce these bursts is not at all simple; besides the shocks which are generated as a result of a strong energy release during the impulsive phase of a flare, there are also the shocks generated by a coronal mass ejection or the shocks which appear in the interplanetary space due to the supplementary acceleration of the solar particles.


1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


2015 ◽  
Vol 11 (S320) ◽  
pp. 134-137
Author(s):  
John P. Pye ◽  
Simon R. Rosen

AbstractWe present estimates of cool-star X-ray flare rates determined from the XMM-Tycho survey (Pyeet al. 2015, A&A, 581, A28), and compare them with previously published values for the Sun and for other stellar EUV and white-light samples. We demonstrate the importance of applying appropriate corrections, especially in regard to the total, effective size of the stellar sample. Our results are broadly consistent with rates reported in the literature for Kepler white-light flares from solar-type stars, and with extrapolations of solar flare rates, indicating the potential of stellar X-ray flare observations to address issues such as ‘space weather’ in exoplanetary systems and our own solar system.


1989 ◽  
Vol 104 (2) ◽  
pp. 185-189
Author(s):  
N. Copalswamy ◽  
M. R. Kundu

AbstractWe present recent results from meter-decameter imaging of several classes of solar radio bursts: Preflare activity in the form of type III bursts, correlated type IIIs from distant sources, and type II and moving type IV bursts associated with flares and CMEs.


1980 ◽  
Vol 86 ◽  
pp. 123-126
Author(s):  
Keizo Kai

We have constructed a 17GHz interferometer of a multi-correlator type at the Nobeyama Solar Radio Observatory. Novel features of the new interferometer are summarized as (i) high time-resolution up to 0.8 s and (ii) “real-time” calibration of the whole system with an accuracy of ~ 2% for amplitudes and ~ 2° for phases. With the aid of these advantages over an interferometer of a conventional drift-scan type we are able to detect and follow rapid time variations of even a faint source (say, ~ 0.5 s.f.u.) on the Sun with a spatial resolution of ~ 40″. The interferometer has been put in operation since July 1978. We have recorded hundreds of bursts at 17GHz in a year including some tens of rapidly changing sources which would not precisely be measured so far. We present here some preliminary results of observations such as polarization structures of both rapidly changing and GRF bursts.


1981 ◽  
Vol 4 (2) ◽  
pp. 139-144 ◽  
Author(s):  
D. B. Melrose

The theory of solar radio bursts remains a mystery to most astronomers and astrophysicists. The reasons for this are not hard to identify. First, the solar radioastronomical data are unfamiliar. (The observational data on solar radio bursts is being reviewed separately at this meeting (McLean 1981).) The important features of this data involve frequency-time structures in dynamic spectra, and such features are absent in data on galactic and extra galactic objects. Even for pulsars the data are obtained at discrete frequencies, and the frequency-time structures are not of major importance. Second, the theory itself involves plasma physical concepts which are unfamiliar to most physicists and astronomers. These concepts include those of plasma instabilities, microturbulence, and of particle-wave and wave-wave interactions. Third, one must also admit that there is a prejudice amongst many astronomers against solar physics: the Sun is regarded as interesting only to the extent that it can teach us about other astronomical objects. I shall return to this third point later.


1996 ◽  
Vol 152 ◽  
pp. 511-518
Author(s):  
Bernhard Haisch ◽  
Julia L. R. Saba ◽  
Jean-Paul Meyer

Systematic differences between elemental abundances in the corona and in the photosphere have been found in the Sun. The abundance anomalies are correlated with the first ionization potentials (FIP) of the elements. The overall pattern is that low-FIP elements are preferentially enhanced relative to high-FIP elements by about a factor of four; the transition occurs at about 10 eV. This phenomenon has been measured in the solar wind and solar energetic particle composition, and in EUV and X-ray spectra of the corona and flares. The FIP effect should eventually offer valuable clues into the process of heating, ionization and injection of material into coronal and flaring loops for the Sun and other stars. The situation for the Sun is remarkably complex: substantial abundance differences occur between different types of coronal structures, and variations occur over time in the same region and from flare to flare. Anomalies such as enhanced Ne/O ratios, distinctly at odds with the basic FIP pattern, have been reported for some flares. Are the high-FIP elements underabundant or the low-FIP elements overabundant with respect to hydrogen? This issue, which has a significant impact in physical interpretation of coronal spectra, is still a subject of controversy and an area of vigorous research.


Sign in / Sign up

Export Citation Format

Share Document