On the cause of enhanced landward motion of the overriding plate after a major subduction earthquake

Author(s):  
Mario D'Acquisto ◽  
Matthew Herman ◽  
Rob Govers

<div> <p>During and after a large megathrust earthquake, the overriding plate above the rupture zone moves oceanward. Enigmatically, the post-seismic motion of the overriding plate after several recent large earthquakes, further along strike from the rupture zone, was faster in the landward direction than before the event. Previous studies interpreted these changes as the result of increased mechanical coupling along the megathrust interface, transient slab acceleration, or bulk postseismic deformation with elastic bending mentioned as a possible underlying mechanism. Before invoking additional mechanisms, it is important to understand the contribution of postseismic deformation processes that are inherent features of megathrust earthquakes. We thus aim to quantify and analyse the deformation that produces landward motion during afterslip and viscous relaxation. </p> </div><div> <p>We use velocity-driven 3D mechanical finite element models, in which large megathrust earthquakes occur periodically on the finite plate interface. The model geometry is similar to most present-day subduction zones, but does not exactly match any specific subduction zone. </p> </div><div> <p>The results show increased post-seismic landward motion at (trench-parallel) distances greater than 450 km from the middle of the ruptured asperity. Similar patterns of landward motion are generated by viscous relaxation in the mantle wedge and by deep afterslip on the shear zone downdip of the brittle megathrust interface. Landward displacement due to postseismic relaxation largely accumulates at exponentially decaying rates until ~6 Maxwell relaxation times after the earthquake. The spatial distribution and magnitude of the velocity changes is broadly consistent with observations related to both the 2010 Maule and the 2011 Tohoku-oki earthquakes.  </p> </div><div> <p>Further model experiments show that patterns of landward motion due to afterslip and to viscous relaxation are insensitive to the locking pattern of the megathrust. However, the locking distribution does affect the magnitudes of the displacements and velocities. Results show that the increased landward displacement due to postseismic deformation scales directly proportionally to seismic moment. </p> </div><div> <p>We conclude that the landward motion results from in-plane horizontal bending of the overriding plate and mantle. This bending is an elastic response to oceanward tractions near the base of the plate around the ruptured asperity, causing extension locally and compression further away along-trench. This elastic in-plate bending consistently contributes to earthquake-associated changes in surface velocities for the biggest megathrust earthquakes, producing landward motion along strike from the rupture zone.</p> </div>

2020 ◽  
Author(s):  
Frederique Rolandone ◽  
Jean-Mathieu nocquet ◽  
Patricia Mothes ◽  
Paul Jarrin ◽  
Mathilde Vergnolle

<p>In subduction zones, slip along the plate interface occurs in various modes including earthquakes, steady slip, and transient accelerated aseismic slip during either Slow Slip Events (SSE) or afterslip. We analyze continuous GPS measurements along the central Ecuador subduction segment to illuminate how the different slip modes are organized in space and time in the zone of the 2016 Mw 7.8 Pedernales earthquake. The early post-seismic period (1 month after the earthquake) shows large and rapid afterslip developing at discrete areas of the megathrust and a slow slip event remotely triggered (∼100 km) south of the rupture of the Pedernales earthquake. We find that areas of large and rapid early afterslip correlate with areas of the subduction interface that had hosted SSEs in years prior to the 2016 earthquake. Areas along the Ecuadorian margin hosting regular SSEs and large afterslip had a dominant aseismic slip mode that persisted throughout the earthquake cycle during several years and decades: they regularly experienced SSEs during the interseismic phase, they did not rupture during the 2016 Pedernales earthquake, they had large aseismic slip after it. Four years after the Pedernales earthquake, postseismic deformation is still on-going. Afterslip and SSEs are both involved in the postseimsic deformation. Two large aftershocks (Mw 6.7 & 6.8) occurred after the first month of postseismic deformation in May 18, and later in July 7 2016 two other large aftershocks (Mw 5.9 & 6.3) occurred, all were located north east of the rupture. They may have triggered their own postseismic deformation. Several seismic swarms were identified south and north of the rupture area by a dense network of seismic stations installed during one year after the Pedernales earthquakes, suggesting the occurrence of SSEs. Geodetically, several SSEs were detected during the postseismic deformation either in areas where no SSEs were detected previously, or in areas where regular seismic swarms and repeating earthquakes were identified. The SSEs may have been triggered by the stress increment due to aftershocks or due to afterslip.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saeko Kita ◽  
Heidi Houston ◽  
Suguru Yabe ◽  
Sachiko Tanaka ◽  
Youichi Asano ◽  
...  

AbstractSlow slip phenomena deep in subduction zones reveal cyclic processes downdip of locked megathrusts. Here we analyze seismicity within a subducting oceanic slab, spanning ~50 major deep slow slip with tremor episodes over 17 years. Changes in rate, b-values, and stress orientations of in-slab seismicity are temporally associated with the episodes. Furthermore, although stress orientations in the slab below these slow slips may rotate slightly, in-slab orientations 20–50 km updip from there rotate farther, suggesting that previously-unrecognized transient slow slip occurs on the plate interface updip. We infer that fluid pressure propagates from slab to interface, promoting episodes of slow slip, which break mineral seals, allowing the pressure to propagate tens of km further updip along the interface where it promotes transient slow slips. The proposed methodology, based primarily on in-slab seismicity, may help monitor plate boundary conditions and slow slip phenomena, which can signal the beginning stages of megathrust earthquakes.


2019 ◽  
Author(s):  
Mathieu Soret ◽  
Philippe Agard ◽  
Benoît Ildefonse ◽  
Benoît Dubacq ◽  
Cécile Prigent ◽  
...  

Abstract. This study sheds light on the deformation mechanisms of subducted mafic rocks metamorphosed at amphibolite and granulite facies conditions, and on their importance for strain accommodation and localization at the top of the slab during subduction infancy. These rocks, namely metamorphic soles, are oceanic slivers stripped from the downgoing slab and plastered below the upper plate mantle wedge during the first million years of intra-oceanic subduction, when the subduction interface is still warm. Their formation and intense deformation (i.e. shear strain ≥ 5) attest to a systematic and transient coupling between the plates over a restricted time span of ~1 My and specific rheological conditions. Combining micro-structural analyses with mineral chemistry constrains grain-scale deformation mechanisms and the rheology of amphibole and amphibolites along the plate interface during early subduction dynamics, as well as the interplay between brittle and ductile deformation, water activity, mineral change, grain size reduction and phase mixing. Results indicate, in particular, that increasing pressure-temperature conditions and slab dehydration (from amphibolite to granulite facies) lead to the crystallization of mechanically strong phases (garnet, clinopyroxene and high-grade amphibole) and rock hardening. In contrast, during early exhumation and cooling (from ~850 down to ~700 °C – 0.7 GPa), the garnet-clinopyroxene-bearing amphibolite experiences pervasive retrogression (and fluid ingression) and significant strain weakening essentially accommodated by dissolution-precipitation and grain boundary sliding processes. Observations also indicate cyclic brittle deformation near peak conditions and throughout the early exhumation, which contributed to fluid channelization within the amphibolites, and possibly strain localization accompanying detachment from the slab. These mechanical transitions, coeval with detachment and early exhumation of the HT metamorphic soles, controlled mechanical coupling across the plate interface during subduction infancy, between the top of the slab and the peridotites above. Our findings may thus apply to other geodynamic environments where similar temperatures, lithologies, fluid circulation and mechanical coupling between mafic rocks and peridotites prevail, such as in mature warm subduction zones (e.g., Nankai, Cascapedia), in lower continental crust shear zones and oceanic detachments.


2021 ◽  
Author(s):  
Saeko Kita ◽  
Heidi Houston ◽  
Suguru Yabe ◽  
Sachiko Tanaka ◽  
Youichi Asano ◽  
...  

Abstract Slow slip phenomena deep in subduction zones reveal cyclic processes downdip of locked megathrusts. Here we analyze seismicity within a subducting oceanic slab under Kii Peninsula, Japan, spanning nearly 50 major deep slow slip and tremor episodes over 17 years. Changes in rate, b-values, and stress orientations of inslab seismicity are temporally associated with the slow slip episodes. Furthermore, although stress orientations in the slab below these slow slips may rotate slightly, inslab orientations 20 to 50 km updip from there rotate significantly, suggesting previously-unrecognized transient slow slip occurs on the plate interface updip. We infer that fluid migrates from slab to interface, promoting episodes of slow slip, which break mineral seals, letting fluid migrate 10’s of km further updip along the interface where it promotes transient slow slips. The proposed methodology, based primarily on inslab seismicity, may help monitor plate boundary conditions and slow slip phenomena, which can signal the beginning stages of megathrust earthquakes.


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1733-1755 ◽  
Author(s):  
Mathieu Soret ◽  
Philippe Agard ◽  
Benoît Ildefonse ◽  
Benoît Dubacq ◽  
Cécile Prigent ◽  
...  

Abstract. This study sheds light on the deformation mechanisms of subducted mafic rocks metamorphosed at amphibolite and granulite facies conditions and on their importance for strain accommodation and localization at the top of the slab during subduction infancy. These rocks, namely metamorphic soles, are oceanic slivers stripped from the downgoing slab and accreted below the upper plate mantle wedge during the first million years of intraoceanic subduction, when the subduction interface is still warm. Their formation and intense deformation (i.e., shear strain ≥5) attest to a systematic and transient coupling between the plates over a restricted time span of ∼1 Myr and specific rheological conditions. Combining microstructural analyses with mineral chemistry constrains grain-scale deformation mechanisms and the rheology of amphibole and amphibolites along the plate interface during early subduction dynamics, as well as the interplay between brittle and ductile deformation, water activity, mineral change, grain size reduction and phase mixing. Results indicate that increasing pressure and temperature conditions and slab dehydration (from amphibolite to granulite facies) lead to the nucleation of mechanically strong phases (garnet, clinopyroxene and amphibole) and rock hardening. Peak conditions (850 ∘C and 1 GPa) coincide with a pervasive stage of brittle deformation which enables strain localization in the top of the mafic slab, and therefore possibly the unit detachment from the slab. In contrast, during early exhumation and cooling (from ∼850 down to ∼700 ∘C and 0.7 GPa), the garnet–clinopyroxene-bearing amphibolite experiences extensive retrogression (and fluid ingression) and significant strain weakening essentially accommodated in the dissolution–precipitation creep regime including heterogeneous nucleation of fine-grained materials and the activation of grain boundary sliding processes. This deformation mechanism is closely assisted with continuous fluid-driven fracturing throughout the exhumed amphibolite, which contributes to fluid channelization within the amphibolites. These mechanical transitions, coeval with detachment and early exhumation of the high-temperature (HT) metamorphic soles, therefore controlled the viscosity contrast and mechanical coupling across the plate interface during subduction infancy, between the top of the slab and the overlying peridotites. Our findings may thus apply to other geodynamic environments where similar temperatures, lithologies, fluid circulation and mechanical coupling between mafic rocks and peridotites prevail, such as in mature warm subduction zones (e.g., Nankai, Cascadia), in lower continental crust shear zones and oceanic detachments.


2015 ◽  
Vol 37 ◽  
pp. 61-64
Author(s):  
Marco Scambelluri ◽  
Enrico Cannaò ◽  
Mattia Gilio ◽  
Marguerite Godard

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masayuki Kano ◽  
Shin’ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip and can be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault. The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly (but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the following 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


2020 ◽  
Vol 36 (3) ◽  
pp. 1271-1297
Author(s):  
Kenneth W. Campbell

In this article, I propose a method for estimating the magnitude [Formula: see text] at which subduction megathrust earthquakes are expected to exhibit a break in magnitude scaling of both seismic source dimensions and earthquake ground motions. The methodology is demonstrated by applying it to 79 global subduction zones defined in the literature, including Cascadia. Breakpoint magnitude is estimated from seismogenic interface widths, empirical source scaling relations, and aspect ratios of physically unbounded earthquake ruptures and their uncertainties. The concept stems from the well-established observation that source-dimension and ground motion scaling decreases for shallow continental (primarily strike-slip) earthquakes when rupture exceeds the seismogenic width of the fault. Although a scaling break for megathrust earthquakes is difficult to observe empirically, all of the instrumentally recorded historical [Formula: see text] mega-earthquakes have occurred on subduction zones with [Formula: see text] (8.1–8.9), consistent with an observed break in source scaling relations derived from these same events. The breakpoint magnitudes derived in this study can be used to constrain the magnitude at which the scaling of ground motion is expected to decrease in subduction ground motion prediction equations.


Sign in / Sign up

Export Citation Format

Share Document