scholarly journals Deformation mechanisms in mafic amphibolites and granulites: record from the Semail metamorphic sole during subduction infancy

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1733-1755 ◽  
Author(s):  
Mathieu Soret ◽  
Philippe Agard ◽  
Benoît Ildefonse ◽  
Benoît Dubacq ◽  
Cécile Prigent ◽  
...  

Abstract. This study sheds light on the deformation mechanisms of subducted mafic rocks metamorphosed at amphibolite and granulite facies conditions and on their importance for strain accommodation and localization at the top of the slab during subduction infancy. These rocks, namely metamorphic soles, are oceanic slivers stripped from the downgoing slab and accreted below the upper plate mantle wedge during the first million years of intraoceanic subduction, when the subduction interface is still warm. Their formation and intense deformation (i.e., shear strain ≥5) attest to a systematic and transient coupling between the plates over a restricted time span of ∼1 Myr and specific rheological conditions. Combining microstructural analyses with mineral chemistry constrains grain-scale deformation mechanisms and the rheology of amphibole and amphibolites along the plate interface during early subduction dynamics, as well as the interplay between brittle and ductile deformation, water activity, mineral change, grain size reduction and phase mixing. Results indicate that increasing pressure and temperature conditions and slab dehydration (from amphibolite to granulite facies) lead to the nucleation of mechanically strong phases (garnet, clinopyroxene and amphibole) and rock hardening. Peak conditions (850 ∘C and 1 GPa) coincide with a pervasive stage of brittle deformation which enables strain localization in the top of the mafic slab, and therefore possibly the unit detachment from the slab. In contrast, during early exhumation and cooling (from ∼850 down to ∼700 ∘C and 0.7 GPa), the garnet–clinopyroxene-bearing amphibolite experiences extensive retrogression (and fluid ingression) and significant strain weakening essentially accommodated in the dissolution–precipitation creep regime including heterogeneous nucleation of fine-grained materials and the activation of grain boundary sliding processes. This deformation mechanism is closely assisted with continuous fluid-driven fracturing throughout the exhumed amphibolite, which contributes to fluid channelization within the amphibolites. These mechanical transitions, coeval with detachment and early exhumation of the high-temperature (HT) metamorphic soles, therefore controlled the viscosity contrast and mechanical coupling across the plate interface during subduction infancy, between the top of the slab and the overlying peridotites. Our findings may thus apply to other geodynamic environments where similar temperatures, lithologies, fluid circulation and mechanical coupling between mafic rocks and peridotites prevail, such as in mature warm subduction zones (e.g., Nankai, Cascadia), in lower continental crust shear zones and oceanic detachments.

2019 ◽  
Author(s):  
Mathieu Soret ◽  
Philippe Agard ◽  
Benoît Ildefonse ◽  
Benoît Dubacq ◽  
Cécile Prigent ◽  
...  

Abstract. This study sheds light on the deformation mechanisms of subducted mafic rocks metamorphosed at amphibolite and granulite facies conditions, and on their importance for strain accommodation and localization at the top of the slab during subduction infancy. These rocks, namely metamorphic soles, are oceanic slivers stripped from the downgoing slab and plastered below the upper plate mantle wedge during the first million years of intra-oceanic subduction, when the subduction interface is still warm. Their formation and intense deformation (i.e. shear strain ≥ 5) attest to a systematic and transient coupling between the plates over a restricted time span of ~1 My and specific rheological conditions. Combining micro-structural analyses with mineral chemistry constrains grain-scale deformation mechanisms and the rheology of amphibole and amphibolites along the plate interface during early subduction dynamics, as well as the interplay between brittle and ductile deformation, water activity, mineral change, grain size reduction and phase mixing. Results indicate, in particular, that increasing pressure-temperature conditions and slab dehydration (from amphibolite to granulite facies) lead to the crystallization of mechanically strong phases (garnet, clinopyroxene and high-grade amphibole) and rock hardening. In contrast, during early exhumation and cooling (from ~850 down to ~700 °C – 0.7 GPa), the garnet-clinopyroxene-bearing amphibolite experiences pervasive retrogression (and fluid ingression) and significant strain weakening essentially accommodated by dissolution-precipitation and grain boundary sliding processes. Observations also indicate cyclic brittle deformation near peak conditions and throughout the early exhumation, which contributed to fluid channelization within the amphibolites, and possibly strain localization accompanying detachment from the slab. These mechanical transitions, coeval with detachment and early exhumation of the HT metamorphic soles, controlled mechanical coupling across the plate interface during subduction infancy, between the top of the slab and the peridotites above. Our findings may thus apply to other geodynamic environments where similar temperatures, lithologies, fluid circulation and mechanical coupling between mafic rocks and peridotites prevail, such as in mature warm subduction zones (e.g., Nankai, Cascapedia), in lower continental crust shear zones and oceanic detachments.


2018 ◽  
Author(s):  
Sina Marti ◽  
Holger Stünitz ◽  
Renée Heilbronner ◽  
Oliver Plümper ◽  
Rüdiger Kilian

Abstract. While it is widely observed that mafic rocks are able to exeprience high strains by viscous flow, details on their rheology and deformation mechanisms are poorly constrained. Here, rock deformation experiments on four different, water-added plagioclase-pyroxene mixtures are presented: (i) plagioclase(An60-70) – clinopyroxene – orthopyroxene, (ii) plagioclase(An60) – diopside, (iii) plagioclase(An60) – enstatite and (iv) plagioclase(An01) – enstatite. Samples were deformed in general shear at strain rates of 3 × 10−5 to 3 × 10−6 s−1, 800 °C and confining pressure of 1.0 or 1.5 GPa. Results indicate that dissolution-precipitation creep (DPC) and grain boundary sliding (GBS) are the dominant deformation mechanisms. Coinciding with sample deformation, syn-kinematic mineral reactions yield abundant nucleation of new grains; the resulting intense grain size reduction is considered crucial for the activity of DPC and GBS. In high strain zones dominated by plagioclase, a weak, non-random and geometrically consistent crystallographic preferred orientation (CPO) is observed. Usually, a CPO is considered a consequence of dislocation creep, but the experiments presented here demonstrate that a CPO can develop during DPC and GBS. This study provides new evidence for the importance of DPC and GBS in mid-crustal shear zones within mafic rocks, which has important implications on understanding and modelling of mid-crustal rheology and flow.


Solid Earth ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 985-1009 ◽  
Author(s):  
Sina Marti ◽  
Holger Stünitz ◽  
Renée Heilbronner ◽  
Oliver Plümper ◽  
Rüdiger Kilian

Abstract. It is widely observed that mafic rocks are able to accommodate high strains by viscous flow. Yet, a number of questions concerning the exact nature of the involved deformation mechanisms continue to be debated. In this contribution, rock deformation experiments on four different water-added plagioclase–pyroxene mixtures are presented: (i) plagioclase(An60–70)–clinopyroxene–orthopyroxene, (ii) plagioclase(An60)–diopside, (iii) plagioclase(An60)–enstatite, and (iv) plagioclase(An01)–enstatite. Samples were deformed in general shear at strain rates of 3×10−5 to 3×10−6 s−1, 800 °C, and confining pressure of 1.0 or 1.5 GPa. Results indicate that dissolution–precipitation creep (DPC) and grain boundary sliding (GBS) are the dominant deformation mechanisms and operate simultaneously. Coinciding with sample deformation, syn-kinematic mineral reactions yield abundant nucleation of new grains; the resulting intense grain size reduction is considered crucial for the activity of DPC and GBS. In high strain zones dominated by plagioclase, a weak, nonrandom, and geometrically consistent crystallographic preferred orientation (CPO) is observed. Usually, a CPO is considered a consequence of dislocation creep, but the experiments presented here demonstrate that a CPO can develop during DPC and GBS. This study provides new evidence for the importance of DPC and GBS in mid-crustal shear zones within mafic rocks, which has important implications for understanding and modeling mid-crustal rheology and flow.


2021 ◽  
pp. 58-85
Author(s):  
Jean-Luc Bouchez ◽  
Adolphe Nicolas

In contrast to the elastic deformation, which is reversible, usually neglected by field geologists but important for geophysicists working in seismology, ductile deformation is irreversible. This chapter is restricted to solid materials. Materials containing a melt fraction will be examined in Chapter 7. In the geological literature, ‘ductile’ is often used as a synonym for ‘plastic’. The latter is rather used, and will be used to specify deformation mechanisms that dominantly involve the action of dislocations. In contrast to brittle deformation, which by essence is discontinuous and highly localized (see Chapter 3), ductile deformation is generally continuous and affects large volumes of rock. However, ductile deformation may be concentrated into restricted rock volumes (or domains). Such localization is common in shear zones and/or when superplastic deformation mechanism is involved. Plastic deformation mechanisms naturally depend on temperature, magnitude of the applied stress, mineral nature and grain-size of the rocks. In upper parts of the crust, fluids are able to carry chemical elements over large distances and influence the deformation mechanisms. Micrographs of several microstructural types as well as deformation maps for olivine and calcite are given at the end of this chapter.


1993 ◽  
Vol 57 (386) ◽  
pp. 55-66 ◽  
Author(s):  
D. Brown ◽  
K. R. McClay

AbstractThe Vangorda Pb-Zn-Ag orebody is a 7.1 M tonne, polydeformed stratiform massive sulphide deposit in the Anvil mining district, Yukon, Canada. Five sulphide lithofacies have been identified within the desposit with a typical mineralogy of pyrite, sphalerite, galena, and barite. Pyrrhotite-sphaleritemagnetite assembalges are locally developed. Etched polished sections of massive pyrite ores display relict primary depositional pyrite textures such as colloform growth zoning and spheroidal/framboidal features. A wide variety of brittle deformation, ductile deformation, and annealing textures have been identified. Brittle deformation textures include thin zones of intense cataclasis, grain indentation and axial cracking, and grain boundary sliding features. Ductile deformation textures include strong preferred grain shape orientations, dislocation textures, grain boundary migration, dynamic recrystallisation and pressure solution textures. Post deformational annealing has produced grain growth with lobate grain boundaries, 120° triple junctions and idioblastic pyrite porphyroblasts. The distribution of deformation textures within the Vangorda orebody suggests strong strain partitioning along fold limbs and fault/shear zones, it is postulated that focussed fluid flow in these zones had significant effects on the deformation of these pyritic ores.


2020 ◽  
Author(s):  
Mario D'Acquisto ◽  
Matthew Herman ◽  
Rob Govers

<div> <p>During and after a large megathrust earthquake, the overriding plate above the rupture zone moves oceanward. Enigmatically, the post-seismic motion of the overriding plate after several recent large earthquakes, further along strike from the rupture zone, was faster in the landward direction than before the event. Previous studies interpreted these changes as the result of increased mechanical coupling along the megathrust interface, transient slab acceleration, or bulk postseismic deformation with elastic bending mentioned as a possible underlying mechanism. Before invoking additional mechanisms, it is important to understand the contribution of postseismic deformation processes that are inherent features of megathrust earthquakes. We thus aim to quantify and analyse the deformation that produces landward motion during afterslip and viscous relaxation. </p> </div><div> <p>We use velocity-driven 3D mechanical finite element models, in which large megathrust earthquakes occur periodically on the finite plate interface. The model geometry is similar to most present-day subduction zones, but does not exactly match any specific subduction zone. </p> </div><div> <p>The results show increased post-seismic landward motion at (trench-parallel) distances greater than 450 km from the middle of the ruptured asperity. Similar patterns of landward motion are generated by viscous relaxation in the mantle wedge and by deep afterslip on the shear zone downdip of the brittle megathrust interface. Landward displacement due to postseismic relaxation largely accumulates at exponentially decaying rates until ~6 Maxwell relaxation times after the earthquake. The spatial distribution and magnitude of the velocity changes is broadly consistent with observations related to both the 2010 Maule and the 2011 Tohoku-oki earthquakes.  </p> </div><div> <p>Further model experiments show that patterns of landward motion due to afterslip and to viscous relaxation are insensitive to the locking pattern of the megathrust. However, the locking distribution does affect the magnitudes of the displacements and velocities. Results show that the increased landward displacement due to postseismic deformation scales directly proportionally to seismic moment. </p> </div><div> <p>We conclude that the landward motion results from in-plane horizontal bending of the overriding plate and mantle. This bending is an elastic response to oceanward tractions near the base of the plate around the ruptured asperity, causing extension locally and compression further away along-trench. This elastic in-plate bending consistently contributes to earthquake-associated changes in surface velocities for the biggest megathrust earthquakes, producing landward motion along strike from the rupture zone.</p> </div>


1987 ◽  
Vol 24 (3) ◽  
pp. 556-564 ◽  
Author(s):  
K. H. Brodie ◽  
E. H. Rutter

It is proposed that one of the most important mechanisms of interrelationship between deformation and metamorphism is the facilitation of one of several grain-size-sensitive deformation mechanisms resulting from the formation of fine-grained products of a metamorphic reaction. During prograde metamorphism, such effects are likely to be transient, because grain coarsening and textural equilibration are likely in response to rising temperature conditions. Thus deformation mechanisms are often difficult to infer from such naturally deformed rocks.In localized shear zones exhibiting retrogressive metamorphism, evidence of enhanced deformability by such mechanisms is most likely to be preserved, because cooling conditions inhibit grain growth and both deformed and undeformed rocks are likely to be preserved.An experimental study has been made of the effects of deformation on serpentinite under conditions of progressive dehydration but with controlled pore pressure. A marked weakening (near-linear viscous rheology) at low strain rates was observed in association with the onset of dehydration to olivine. The enhancement of deformability is interpreted as due to the formation of thin, planar zones of ultrafine-grained but equiaxed (0.25 μm) olivine, which deform by diffusion-accommodated grain-boundary sliding. The experimental data therefore support the idea that a great deal of natural deformation during prograde metamorphism may occur in association with the transient existence of fine-grained reaction products, followed by grain growth and textural equilibration under essentially static conditions of relaxed stress.


Geosphere ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1408-1424 ◽  
Author(s):  
Geoffrey A. Abers ◽  
Peter E. van Keken ◽  
Cian R. Wilson

Abstract The plate interface undergoes two transitions between seismogenic depths and subarc depths. A brittle-ductile transition at 20–50 km depth is followed by a transition to full viscous coupling to the overlying mantle wedge at ∼80 km depth. We review evidence for both transitions, focusing on heat-flow and seismic-attenuation constraints on the deeper transition. The intervening ductile shear zone likely weakens considerably as temperature increases, such that its rheology exerts a stronger control on subduction-zone thermal structure than does frictional shear heating. We evaluate its role through analytic approximations and two-dimensional finite-element models for both idealized subduction geometries and those resembling real subduction zones. We show that a temperature-buffering process exists in the shear zone that results in temperatures being tightly controlled by the rheological strength of that shear zone’s material for a wide range of shear-heating behaviors of the shallower brittle region. Higher temperatures result in weaker shear zones and hence less heat generation, so temperatures stop increasing and shear zones stop weakening. The net result for many rheologies are temperatures limited to ≤350–420 °C along the plate interface below the cold forearc of most subduction zones until the hot coupled mantle is approached. Very young incoming plates are the exception. This rheological buffering desensitizes subduction-zone thermal structure to many parameters and may help explain the global constancy of the 80 km coupling limit. We recalculate water fluxes to the forearc wedge and deep mantle and find that shear heating has little effect on global water circulation.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 579-598 ◽  
Author(s):  
Francisco José Fernández ◽  
Sergio Llana-Fúnez ◽  
Pablo Valverde-Vaquero ◽  
Alberto Marcos ◽  
Pedro Castiñeiras

Abstract. High-grade, highly deformed gneisses crop out continuously along the Masanteo peninsula and constitute the upper part of the lower crustal section in the Cabo Ortegal nappe (NW Spain). The rock sequence formed by migmatitic quartzo-feldspathic (qz-fsp) gneisses and mafic rocks records the early Ordovician (ca. 480–488 Ma) injection of felsic dioritic/granodioritic dykes at the base of the qz-fsp gneisses, and Devonian eclogitization (ca. 390.4 ± 1.2 Ma), prior to its exhumation. A SE-vergent ductile thrust constitutes the base of quartzo-feldspathic gneissic unit, incorporating mafic eclogite blocks within migmatitic gneisses. A NW-vergent detachment displaced metasedimentary qz-fsp gneisses over the migmatites. A difference in metamorphic pressure of ca. 0.5 GPa is estimated between both gneissic units. The tectono-metamorphic relationships of the basal ductile thrust and the normal detachment bounding the top of the migmatites indicate that both discrete mechanical contacts were active before the recumbent folding affecting the sequence of gneisses during their final emplacement. The progressive tectonic exhumation from eclogite to greenschist facies conditions occurred over ca. 10 Ma and involved bulk thinning of the high-grade rock sequence in the high pressure and high temperature (HP–HT) Cabo Ortegal nappe. The necessary strain was accommodated by the development of a widespread main foliation, dominated by flattening, that subsequently localized to a network of anastomosing shear bands that evolved to planar shear zones. Qz-fsp gneisses and neighbouring mafic granulites were exhumed at > 3 mm yr−1, and the exhumation path involved a cooling of  ∼  20 °C/100 MPa, These figures are comparable to currently active subduction zones, although exhumation P–T trajectory and ascent rates are at the hotter and slower end in comparison with currently active similar settings, suggesting an extremely ductile deformation environment during the exhumation of qz-fsp gneisses within a coherent Cabo Ortegal nappe.


Sign in / Sign up

Export Citation Format

Share Document