scholarly journals ARPEGE cloud cover forecast post-processing with convolutional neural network

Author(s):  
Florian Dupuy ◽  
Olivier Mestre ◽  
Léo Pfitzner

<p>Cloud cover is a crucial information for many applications such as planning land observation missions from space. However, cloud cover remains a challenging variable to forecast, and Numerical Weather Prediction (NWP) models suffer from significant biases, hence justifying the use of statistical post-processing techniques. In our application, the ground truth is a gridded cloud cover product derived from satellite observations over Europe, and predictors are spatial fields of various variables produced by ARPEGE (Météo-France global NWP) at the corresponding lead time.</p><p>In this study, ARPEGE cloud cover is post-processed using a convolutional neural network (CNN). CNN is the most popular machine learning tool to deal with images. In our case, CNN allows to integrate spatial information contained in NWP outputs. We show that a simple U-Net architecture produces significant improvements over Europe. Compared to the raw ARPEGE forecasts, MAE drops from 25.1 % to 17.8 % and RMSE decreases from 37.0 % to 31.6 %. Considering specific needs for earth observation, special interest was put on forecasts with low cloud cover conditions (< 10 %). For this particular nebulosity class, we show that hit rate jumps from 40.6 to 70.7 (which is the order of magnitude of what can be achieved using classical machine learning algorithms such as random forests) while false alarm decreases from 38.2 to 29.9. This is an excellent result, since improving hit rates by means of random forests usually also results in a slight increase of false alarms.</p>

Author(s):  
Florian Dupuy ◽  
Olivier Mestre ◽  
Mathieu Serrurier ◽  
Valentin Kivachuk Burdá ◽  
Michaël Zamo ◽  
...  

AbstractCloud cover provides crucial information for many applications such as planning land observation missions from space. It remains however a challenging variable to forecast, and Numerical Weather Prediction (NWP) models suffer from significant biases, hence justifying the use of statistical post-processing techniques. In this study, ARPEGE (Météo-France global NWP) cloud cover is post-processed using a convolutional neural network (CNN). CNN is the most popular machine learning tool to deal with images. In our case, CNN allows the integration of spatial information contained in NWP outputs. We use a gridded cloud cover product derived from satellite observations over Europe as ground truth, and predictors are spatial fields of various variables produced by ARPEGE at the corresponding lead time. We show that a simple U-Net architecture (a particular type of CNN) produces significant improvements over Europe. Moreover, the U-Net outclasses more traditional machine learning methods used operationally such as a random forest and a logistic quantile regression. When using a large number of predictors, a first step toward interpretation is to produce a ranking of predictors by importance. Traditional methods of ranking (permutation importance, sequential selection, . . . ) need important computational resources. We introduced a weighting predictor layer prior to the traditional U-Net architecture in order to produce such a ranking. The small number of additional weights to train (the same as the number of predictors) does not impact the computational time, representing a huge advantage compared to traditional methods.


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

In recent years, due to the increasing amounts of data gathered from the medical area, the Internet of Things are majorly developed. But the data gathered are of high volume, velocity, and variety. In the proposed work the heart disease is predicted using wearable devices. To analyze the data efficiently and effectively, Deep Canonical Neural Network Feed-Forward and Back Propagation (DCNN-FBP) algorithm is used. The data are gathered from wearable gadgets and preprocessed by employing normalization. The processed features are analyzed using a deep convolutional neural network. The DCNN-FBP algorithm is exercised by applying forward and backward propagation algorithm. Batch size, epochs, learning rate, activation function, and optimizer are the parameters used in DCNN-FBP. The datasets are taken from the UCI machine learning repository. The performance measures such as accuracy, specificity, sensitivity, and precision are used to validate the performance. From the results, the model attains 89% accuracy. Finally, the outcomes are juxtaposed with the traditional machine learning algorithms to illustrate that the DCNN-FBP model attained higher accuracy.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


Author(s):  
Denis Sato ◽  
Adroaldo José Zanella ◽  
Ernane Xavier Costa

Vehicle-animal collisions represent a serious problem in roadway infrastructure. To avoid these roadway collisions, different mitigation systems have been applied in various regions of the world. In this article, a system for detecting animals on highways is presented using computer vision and machine learning algorithms. The models were trained to classify two groups of animals: capybaras and donkeys. Two variants of the convolutional neural network called Yolo (You only look once) were used, Yolov4 and Yolov4-tiny (a lighter version of the network). The training was carried out using pre-trained models. Detection tests were performed on 147 images. The accuracy results obtained were 84.87% and 79.87% for Yolov4 and Yolov4-tiny, respectively. The proposed system has the potential to improve road safety by reducing or preventing accidents with animals.


The applications of a content-based image retrieval system in fields such as multimedia, security, medicine, and entertainment, have been implemented on a huge real-time database by using a convolutional neural network architecture. In general, thus far, content-based image retrieval systems have been implemented with machine learning algorithms. A machine learning algorithm is applicable to a limited database because of the few feature extraction hidden layers between the input and the output layers. The proposed convolutional neural network architecture was successfully implemented using 128 convolutional layers, pooling layers, rectifier linear unit (ReLu), and fully connected layers. A convolutional neural network architecture yields better results of its ability to extract features from an image. The Euclidean distance metric is used for calculating the similarity between the query image and the database images. It is implemented using the COREL database. The proposed system is successfully evaluated using precision, recall, and F-score. The performance of the proposed method is evaluated using the precision and recall.


2021 ◽  
Vol 11 (18) ◽  
pp. 8533
Author(s):  
Jaehoon Cha ◽  
Moon Keun Kim ◽  
Sanghyuk Lee ◽  
Kyeong Soo Kim

This study explores investigation of applicability of impact factors to estimate solar irradiance by four machine learning algorithms using climatic elements as comparative analysis: linear regression, support vector machines (SVM), a multi-layer neural network (MLNN), and a long short-term memory (LSTM) neural network. The methods show how actual climate factors impact on solar irradiation, and the possibility of estimating one year local solar irradiance using machine learning methodologies with four different algorithms. This study conducted readily accessible local weather data including temperature, wind velocity and direction, air pressure, the amount of total cloud cover, the amount of middle and low-layer cloud cover, and humidity. The results show that the artificial neural network (ANN) models provided more close information on solar irradiance than the conventional techniques (linear regression and SVM). Between the two ANN models, the LSTM model achieved better performance, improving accuracy by 31.7% compared to the MLNN model. Impact factor analysis also revealed that temperature and the amount of total cloud cover are the dominant factors affecting solar irradiance, and the amount of middle and low-layer cloud cover is also an important factor. The results from this work demonstrate that ANN models, especially ones based on LSTM, can provide accurate information of local solar irradiance using weather data without installing and maintaining on-site solar irradiance sensors.


2020 ◽  
Author(s):  
Yuanren Tong ◽  
Keming Lu ◽  
Yingyun Yang ◽  
Ji Li ◽  
Yucong Lin ◽  
...  

Abstract Background: Differentiating between ulcerative colitis (UC), Crohn’s disease (CD) and intestinal tuberculosis (ITB) using endoscopy is challenging. We aimed to realize automatic differential diagnosis among these diseases through machine learning algorithms. Methods: A total of 6399 consecutive patients (5128 UC, 875 CD and 396 ITB) who had undergone colonoscopy examinations in the Peking Union Medical College Hospital from January 2008 to November 2018 were enrolled. The input was the description of the endoscopic image in the form of free text. Word segmentation and key word filtering were conducted as data preprocessing. Random forest (RF) and convolutional neural network (CNN) approaches were applied to different disease entities. Three two-class classifiers (UC and CD, UC and ITB, and CD and ITB) and a three-class classifier (UC, CD and ITB) were built. Results: The classifiers built in this research performed well, and the CNN had better performance in general. The RF sensitivities/specificities of UC-CD, UC-ITB, and CD-ITB were 0.89/0.84, 0.83/0.82, and 0.72/0.77, respectively, while the values for the CNN of CD-ITB were 0.90/0.77. The precisions/recalls of UC-CD-ITB when employing RF were 0.97/0.97, 0.65/0.53, and 0.68/0.76, respectively, and when employing the CNN were 0.99/0.97, 0.87/0.83, and 0.52/0.81, respectively.Conclusions: Classifiers built by RF and CNN approaches had excellent performance when classifying UC with CD or ITB. For the differentiation of CD and ITB, high specificity and sensitivity were achieved as well. Artificial intelligence through machine learning is very promising in helping unexperienced endoscopists differentiate inflammatory intestinal diseases.


2021 ◽  

<p>Water being a precious commodity for every person around the world needs to be quality monitored continuously for ensuring safety whilst usage. The water data collected from sensors in water plants are used for water quality assessment. The anomaly present in the water data seriously affects the performance of water quality assessment. Hence it needs to be addressed. In this regard, water data collected from sensors have been subjected to various anomaly detection approaches guided by Machine Learning (ML) and Deep Learning framework. Standard machine learning algorithms have been used extensively in water quality analysis and these algorithms in general converge quickly. Considering the fact that manual feature selection has to be done for ML algorithms, Deep Learning (DL) algorithm is proposed which involve implicit feature learning. A hybrid model is formulated that takes advantage of both and presented it is data invariant too. This novel Hybrid Convolutional Neural Network (CNN) and Extreme Learning Machine (ELM) approach is used to detect presence of anomalies in sensor collected water data. The experiment of the proposed CNN-ELM model is carried out using the publicly available dataset GECCO 2019. The findings proved that the model has improved the water quality assessment of the sensor water data collected by detecting the anomalies efficiently and achieves F1 score of 0.92. This model can be implemented in water quality assessment.</p>


Sign in / Sign up

Export Citation Format

Share Document